Some statistical problems involving estimation of eigenvalues and eigenvectors from noisy data

October 6, 2006

1. Functional linear regression : Observe i.i.d. $\{(X_i, Y_i) : i = 1, ..., n\}$, where Y_i are scaler random variables and X_i are L^2 random processes on an interval \mathcal{I} . Assume the model:

$$Y_i = a + \int_{\mathcal{I}} b(u) X_i(u) du + \epsilon_i \tag{1}$$

where ϵ_i are i.i.d., zero mean r.v., $b \in L^2(\mathcal{I})$ is a deterministic function.

- How to estimate b?
- How to predict Y ?

One popular method is Principal Components Regression (PCR). (How many components to select ?)

2. Factor model in statistics : Observe i.i.d. data X_i distributed as

$$X_i = \mu + \sum_{k=1}^{M} \sqrt{\lambda_k} v_{ki} \theta_k + \sigma Z_i, \qquad (2)$$

where $\{v_{ki} : 1 \leq k \leq M, 1 \leq i \leq n\}$ are i.i.d. N(0,1) r.v. and $\{Z_i\}$ are i.i.d. N(0,I). $\theta_k^T \theta_l = \delta_{kl}$ for $1 \leq k, l \leq M$.

- How to estimate M, $\{(\lambda_k, \theta_k) : k = 1, \dots, M\}$?
- What if data consist of irregularly sampled functions from an interval ?
- More general covariance matrix for Z?
- 3. Factor model in finance : A market involving K companies, and B industrial branches. κ_b companies in b-th industrial branch $(b = 1, \ldots, B)$ and $\sum_{b=1}^{B} \kappa_b = K kappa$, where $0 \le \kappa \le K$ is the number of companies not associated with any industrial branch. If company k is in branch b, then series of its returns: $M_k(t)$ represented as:

$$M_k(t) = q_b \eta_b(t) + r_b \epsilon_k(t), \qquad (3)$$

where $q_b, r_b > 0$ and $\eta_b(t), \epsilon_k(t)$ are i.i.d. N(0, 1).

4. Time dependent observations :

- Vector autoregressive process.
- Autoregressive Hilbertian process.