
Regularization oriented towards goal.

In many statistical applications, the ultimate goal, in inference about a co-
variance matrix, has to do with optimization of a quadratic form involving that
unknown matrix. Denote the unknown matrix by Σ = Σm×m, where Σ = EZZ ′,
Z = (Z1, ..., Zm), Z ∼ F .

For example principal component:

argmaxββ′Σβ s.t. ||β|| = 1. (1)

In case there is an independent sample Z i = (Zi
1
, ..., Zi

m), Zi ∼ F , i =
1, ..., n, we define the obvious estimator S for Σ, S = 1

n

∑

Zi(Zi)′.
Note, when m >> n, there is no hope to find (even nearly) the maximizer

of (1), but our goal is still to find β̂ with high values of β̂′Σβ̂.
When replacing the original problem (1) by the following:

argmaxββ′Sβ s.t. ||β|| = 1, (2)

further regularizations are needed in order to obtain ‘reliable’ solutions. By
reliable we mean that the empirical behavior of a solution β̂ resembles the actual
one, i.e. β̂′Sβ̂ is close to β̂′Σβ̂.

One popular method is the Lasso i.e., imposing a further constraint that
∑

|βj | < C1. Here C1 is a tuning parameter. The work in Greenshtein and
Ritov (2005) and Greenshtein (2006), suggest that the value of C1 is of the
order of

√

n/ log(n). But, in practice the exact value should be determined,
e.g., through a test-set/ cross validation.

Thus, in Lasso we obtain a solution β̂ to (2), but under the additional l1
constraint.

I would like to suggest here an additional regularization constraint. Let
V (β) = V ar(β′ZZ ′β). Let V̂ (β), be the obvious empirical estimator of V (β). I
suggest to add a constraint:

V̂ (β) < C2,

where C2 is again a tuning parameter that should be determined by a test-
set/cross validation.

I believe that the solution β̂ under both the l1 and the additional constraint
(tuned appropriately) is better (i.e., typically with higher values of β̂′Σβ̂), than
the solution obtained only under a Lasso constraint. This should be true in a
meaningful and large collection of setups.
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