
Robust and accurate inference via a
mixture of Gaussian and terrors

Hyungsuk Tak

ICTS/SAMSI Time Series Analysis for Synoptic Surveys and Gravitational Wave Astronomy

22 March 2017

Joint work with Justin Ellis (Caltech, JPL)

1 / 20



Motivation

I Gaussian error, εj ∼ N1(0, Vj)

- Pros : (Thin tails) Efficient inference when @ outliers.
- Cons: Can bias inference when ∃ outliers.

I Student’s tν error, εj ∼ V 0.5
j tν

- Pros: (Heavy tails) Robust to outliers.
- Cons: Can be less efficient due to unnecessarily heavy tails

for most of the normally observed data.

I Why not use both? A mixture of Gaussian and Student’s tν errors,

εj ∼ N1(0, Vj) with probability 1− θj ,
∼ V 0.5

j tν with probability θj ,

enables a robust & accurate estimation.
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The mixture error

A p-dimensional mixture error with ‘known’ (or very accurately
estimated) variance component Vj is

εj | zj , αj ∼ Np(0, αj
zjVj),

zj | θj ∼ Bernoulli(θj),

θj ∼ Uniform(0, 1),

αj ∼ Inv.Gamma(ν/2, ν/2).

I zj , a latent outlier indicator.

I θj , probability of datum j being an outlier.

I αj , an auxiliary variable to express tν as a scale mixture of Gaussian.

E.g., if x | α ∼ N(0, α) & α ∼ Inv.Gamma(ν/2, ν/2), then x ∼ tν .

(West, 1987; Peel and McLachlan, 2000; Gelman et al., 2013)
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Relationship with other errors

εj | zj , αj ∼ Np(0, α
zj
j Vj),

zj | θj ∼ Bernoulli(θj),

θj ∼ Uniform(0, 1),

αj ∼ inverse-Gamma(ν/2, ν/2).

This proposed mixture error is marginally equivalent to

I a Gaussian error if zj = 0 for all j .

I a tν error if zj = 1 for all j .

I a mixture of Gaussian & tν error.

I a mixture of two Gaussians if αj is fixed at a constant (e.g., MLE)
(Aitkin and Wilson, 1980; Hogg et al., 2010; Vallisneri and van
Haasteren, 2017).
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Converting Gaussian error to mixture error

Conversion: We simply multiply α
zj
j to Vj with prior distributions on the

additional parameters:

From εj ∼ Np(0, Vj)

to εj | zj , αj ∼ Np(0, α
zj
j Vj),

zj | θj ∼ Bernoulli(θj),

θj ∼ Uniform(0, 1),

αj ∼ Inv.Gamma(ν/2, ν/2).

Implementation: We can use any sampler derived from a Gaussian error
model (Vj → α

zj
j Vj), additionally updating zj , θj , and αj .
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Example 1: Unknown location

Three data sets:

I Original Data: yj
i.i.d.∼ N(0, 1) for j = 1, 2, . . . , 20.

I Data with an outlier: The same data except y20 = −10 or y20 = 10.

Suppose the mean (µ) of the generative Gaussian distribution is unknown.

Three error models with an improper flat prior on µ:

I Gaussian error: yj | µ = µ+ εj , εj ∼ N(0, 1)

I t4 error (Chp 17, Gelman et al., 2013):

yj | µ = µ+ εj , εj ∼ t4
I Mixture error:

yj | µ, zj , αj = µ+ εj , εj ∼ N(0, α
zj
j ),

zj ∼ Bernoulli(0.1),

αj ∼ Inv.Gamma(2, 2).
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Example 1: Unknown location (cont.)

Marginal posterior distribution of µ based on a million posterior samples.

I Without outlier, the dotted blue curve (mixture) passes in-between
the dashed (Gaussian) and solid red (t4) curves, i.e., a mixture effect.

I With outlier, the mixture error robustly maintains the mixture effect,
enabling a robust and more accurate inference.

I CPU time (seconds): 11 for t4 and 27 for mixture.
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Example 3: Pulsar timing data
Pulse timing array for detecting gravitational waves

Credit: John Rowe, Swinbourne

“Interacting black holes in merging galaxies generates low frequency

gravitational waves. As these waves propagate through space, they cause

coordinated changes in the arrival times of radio signals from pulsars, the

universe’s most stable natural clocks. These telltale variations can be detected

by powerful radio telescopes,” NRAO Outreach
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Example 3: Pulsar timing data (cont.)

TOAj − τTM
j = εWN

j + δtj
TM + τEC

j + τDM
j + τRN

j + τGW
j
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Example 3: Pulsar timing data (cont.)
Statistical modeling: With φ = (A, γ)

- εWN ∼ Normaln(0,N)

- δtj
TM + τEC

j + τDM
j + τRN

j + τGW
j | φ ∼ Normaln(0,T ′B(φ)T )

Probability distribution:

Let δt be the observed residuals.

δt | φ ∼ Normaln(0, V + T ′B(φ)T )

- Likelihood function of φ:

L(φ) ∝ exp
(
−0.5× δt>(V + T ′B(φ)T )−1δt

)
× |V + T ′B(φ)T |−0.5

- Prior dist. (f ) of φ: log10(A) ∼ Unif(−18,−10) and γ ∼ Unif(0, 7).

- Posterior dist. (π) of φ:

π(φ | δt) ∝ L(φ)× f (φ)
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Example 3: Pulsar timing data (cont.)

Original model: δt | φ ∼ Normaln(0, V + T ′B(φ)T )

I (Ellis, 2016) Equivalent hierarchical model:

δt | b ∼ Normaln(T ′b, V )

b | φ ∼ Normalk(0, B(φ))

I Converting the hierarchical model to outlier model:

δt | b ∼ Normaln(T ′b, αzV )

b | φ ∼ Normalk(0, B(φ))

zj | θj ∼ Bernoulli(θj), θj ∼ Uniform(0, 1), αj ∼ Inv.Gamma(2, 2).
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Example 3: Pulsar timing data (cont.)
A simulation study (done by Justin Ellis)

Yellow crosses for synthetic outliers and red dots for the data that our
model considers as outliers.
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Example 3: Pulsar timing data (cont.)

Marginal posterior distributions of log10(A) and γ with their scatter plot.
- Left three panels: The original and hierarchical Gaussian error models.

- Right three panels: Red from t4 errors, green from mixture errors, and
Blue lines for true values.
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Example 3: Pulsar timing data (cont.)
Orange curve for the fit with Gaussian errors, and green curve for the fit
with mixture errors.
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Conclusion

A mixture error model can result in a robust and more accurate
parameter estimation in the presence of outliers than a t4 error model.

It is simple and always possible to convert a Gaussian error to a mixture
error by multiplying α

zj
j to the (known) variance component Vj .

Additional computational cost is not expensive.

Detecting outliers is another venue.
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