
Technical Report #2005-8
July 28, 2005

Statistical and Applied Mathematical Sciences Institute
PO Box 14006

Research Triangle Park, NC 27709-4006
www.samsi.info

Simulation in Industrial Statistics

David Rios Insua, Jorge Muruzabal, Jesus Palomo,
Fabrizio Ruggeri, Julio Holgado, Raul Moreno

This material was based upon work supported by the National Science Foundation under Agreement No.
DMS-0112069. Any opinions, findings, and conclusions or recommendations expressed in this material are

those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Simulation in Industrial Statistics

David Ŕıos Insua, Jorge Muruzabal, Jesus Palomo,
Fabrizio Ruggeri, Julio Holgado, Raul Moreno

Statistics and Decision Sciences Group, U. Rey Juan Carlos, Spain
Duke University-SAMSI, USA

CNR-IMATI, Italy
Computing Services, U. Rey Juan Carlos, Spain

Telefonica I+D, Spain

Abstract

We provide a brief introduction to simulation methods and tools

within Industrial Statistics. We illustrate both Monte Carlo and dis-

crete event simulation, within a common framework, through several

motivating examples showing the relevance of simulation. We then

describe random number and variate generation, and how to obtain

and analyse output data from a simulation model. A case study in

modelling a workflow line within the digitalisation industry guides our

discussion. Relevant pointers to references and url’s are provided.

Keywords: Simulation, Monte Carlo methods, Discrete

event simulation, Industrial statistics

1 Introduction

Tipically, once an organisation has realised that a system is not operating as
desired, it will look for ways to improve its performance. To do so, sometimes
it is possible to experiment with the real system and, through observation
and the aid of Statistics, reach valid conclusions towards future system im-
provement. Many chapters in this book have illustrated this point. However,
experiments with a real system may entail ethical and/or economical prob-
lems, which may be avoided dealing with a prototype, a physical model.

1

Sometimes, it is not feasible or possible, to build a prototype, yet we may
obtain a mathematical model describing, through equations and constraints,
the essential behaviour of the system. This analysis may be done, sometimes,
through analytical or numerical methods, but the model may be too complex
to be dealt with. In such extreme cases, we may use simulation. Large com-
plex system simulation has become common practice in many industrial areas
such as the prediction of the performance of integrated circuits, the behavior
of controlled nuclear fusion devices, the properties of thermal energy storage
devices or the stresses in prosthetic devices. Essentially, simulation consists
of (i) building a computer model that describes the behaviour of a system;
and (ii) experimenting with this computer model to reach conclusions that
support decisions. In this chapter, we introduce key concepts, methods and
tools from simulation with the industrial statistics practitioner in mind.

In order to give a flavour of various Simulation applications and dis-
tinguish between discrete event simulation (DES) and Monte Carlo (MC)
simulation, we describe several real cases. We outline an example in gas
pipeline reliability to illustrate simulation methods in Bayesian statistics; an
example in vehicle crash-tests modeling, to illustrate large scale models, and
a detailed description of a DES model to predict the behaviour of a complex
workflow line.

Designing a workflow line The study of moderately complex workflow
lines, so as to optimize their performance, quickly leads to mathematical
models which may be only dealt with through simulation. The specific con-
text we consider here is that of modelling massive data capturing lines for
financial institutions. This task has been outsourced by banks over compa-
nies working in a very competitive environment, which, therefore, look for
gains in efficiency.

The process specifically considered here is as follows. Every day sev-
eral bags arrive to the line containing bank documents to be digitized and
recorded. Such documents must be stored in CD’s for later use in the bank
with several financial checks in between. The line is meant to deliver the
completed task at a given time window. Otherwise, the company will be
heavily penalized economically. From input (bags with financial documents)
to output (CD’s) the process goes through several stages. Our aim here is to
forecast whether the company will deliver the work before the deadline and,
if not, detect bottlenecks and suggest line reconfigurations.

2

We now briefly describe a typical configuration and the whole process
within this massive data capturing line, with the various stages and the
involved operations, resources, objectives and intervening agents:

• Paper preparation. The documents received are arranged and organ-
ised, taking into account the different types of documents, by several
persons for later processing.

• Document scanning, to produce digitized documents. Two scanners are
used (one for backup). Some of the documents could be illegible, and
we would need to mark such documents for later special treatment.

• Optical recognition (OCR) of relevant features, like dates, imports and
so on, so as to reduce later workload. Some of them may be wrongly
recognised. Several workstations are involved at this stage.

• Recording. Documents are classified as legible or illegible; these are
filled manually. Up to forty people may take part in this process.

• Resolution of illegible documents. In this phase, a person is in charge of
looking for the original document, to digitize it correctly. An operator
controls a workstation dedicated to this task.

• Coding. A second image recording takes place with all images that
the recorder could not deal with. An operator controls a workstation
dedicated to this task.

• Date verification. If necessary, dates are corrected. An operator con-
trols a workstation dedicated to this task.

• Field verification. If necessary, fields are corrected. An operator con-
trols a workstation dedicated to this task.

• Final verification. Every now and then, a document is inspected for
correct recording. If necessary, they are corrected. An operator controls
a workstation dedicated to this task.

• Balancing the totals. All documents within a lot are checked to verify
their imports. A person with a workstation and a balancing program
takes care of this.

3

• Modification. Those documents which did not pass the balancing phase
are corrected by contrast with the original documents.

• Export. A file is generated and recorded on CD-ROMs.

On each of the stages of the scenario described above, the difficulties to
deal with are: the resources are shared by processes, several random processes
are involved, several parameters are under control and others need to be
estimated. The basic problem we want to solve is whether the company will
be able to finish the work before a limit time h, given the current system
configuration, defined by the parameters under control z (number of OCR’s,
the number of workers at each workstage,...). Formally, if T designates the
actual completion time window, we want to find out whether

Pr(T ≤ h|z)

will be big enough so as to guarantee the completion of work. Recall that,
otherwise, there is a big economic penalty. In case this probability is not big
enough, we must reconfigure the system, modifying z. Because of the com-
plexity of the model, we are unable to compute such probability analytically
and, consequently, simulation is used.

Reliability of a gas pipeline system Gas distribution networks can be
considered repairable systems whose failures (gas escapes) may be described
by nonhomogeneous Poisson processes, see the review paper by Ruggeri
(2005) and references therein, which address various aspects in the statis-
tical analysis of gas escapes.

In a consulting case, both homogeneous and nonhomogeneous Poisson
processes were used for ”old” cast iron and steel pipes, respectively, since the
former pipes are not ageing, whereas the latter are subject to corrosion. Both
maximum likelihood and Bayesian estimation were used on data collected
from a gas company. The final objective was to fit a model suitable for
the description of the network so as to predict which pipes and operating
conditions were more likely to lead to gas escapes, identifying influential
factors on escapes and related costs, due, e.g., to preventive maintenance and
repair. An important issue to note was that many data was missing and was
only fairly complete for recent years. We had also available experts which we
interviewed to obtain their prior beliefs on the parameters of interest, tested
through sensitivity analysis.

4

Simulation techniques were fundamental in this study. We just quote
several applications:

• Modelling. Typical repairable systems have a ”bath-tub” shaped inten-
sity function, whereas more complex behaviour is possible. It is quite
common to consider different models in different time intervals; this is
a typical change-point problem. The estimation of change points and
their number and changes in the parameters have been addressed in
a Bayesian framework using a simulation technique called Reversible
Jump Markov Chain Monte Carlo, due to Green (1995), in which sam-
ples from the posterior distributions of the parameters are obtained
along with the distribution of the number and the location of the change
points.

• Parameter estimation. Standard optimisation techniques are used to
get maximum likelihood estimates, whereas Markov Chain Monte Carlo
techniques (mostly Gibbs and Metropolis-Hastings) are now routine in
Bayesian analysis and they were used in our study.

• Missing data. Installation dates of failed pipes were sometimes missing
and they were drawn from a probability distribution.

• Comparison between estimates. MLE and Bayes estimates were com-
pared through extensive simulations, drawing data from known processes
and trying to estimate their parameters.

Reducing vehicle-crash tests Traditionally, the automobile and aero-
nautic industries have been using physical experiments for design and se-
curity test purposes, such as car crash tests, wind tunnels,. . . However, as
the market becomes more competitive, the time to deliver gets shorter and
budgets get tighter. This implies that the number of prototypes built on the
scale required to gather sufficient information for decision or research pur-
poses is reduced and are not sufficient to produce good estimates. In theses
cases, simulation becomes essential to fill the gap of lack of information. A
fully Bayesian approach would account for the uncertainty on the simulation
input parameters in an MCMC fashion. A problem in this case is that, since
to ensure convergence we have to run the Simulation a long number of iter-
ations, but, on the other hand, the simulation model is very complex, this
is computationally intensive and slow. Therefore, due to time restrictions, a

5

proper experimental design should be performed in order to cover the input
parameter space with the smallest amount of iterations, see e.g., Atkinson
and Donev (1992).

As an example, we considered the simulation of a model of a vehicle be-
ing driven over a road with two major potholes, see Bayarri et al. (2004)
for full details. The model included thirty parameters but, to simplify, we
just consider nine of them uncertain, the rest being assumed known. The
uncertainty on these parameters comes from deviations of manufacturing
properties of the materials from their nominal values (measured parameters
but with uncertainty), and calibration parameters model (non-measured in-
put parameters). The outputs of the simulation were the vertical tensions
experimented on the suspension system of a particular vehicle while hitting
two consecutive potholes. Each simulation model run takes around four days
to produce one output for a particular experiment design vector, and some-
times, due to inconsistencies with it, the run may fail (does not converge).
As a result, we will obtain curves for each of the design experiment vectors,
for the vertical tension experimented at different spots of the vehicle along
the distance that contains the two potholes.

The advantages of using a simulation approach in this problem are that
the physical experiment is expensive, and that it provides insights about
testing a potential vehicle with specifications that are currently infeasible.
For example, it could be of interest for the car maker to test the behavior of
a current vehicle model with particular springs or tires that have not been
developed yet, but could be ordered to a vendor.

The simplifications usually assumed on these large simulation models
cause big differences with the physical experiments. To overcome this draw-
back, we need to develop methods to estimate the bias. This information
can be used in different useful ways. For example, by using it as a tar-
get (bias equal to zero) to improve the simulation model, say by variable
and model selection; to produce bias corrected prediction curves of reality,
without performing the physical experiment, for the same physically tested
vehicle, another vehicle of the same type, or another vehicle of different type
stemming from the simulation curves obtained,. . . See Berger et al. (2004)
for more details.

6

1.1 Outline of chapter

We have sketched several real case studies concerning applications of simula-
tion in Industrial Statistics. We shall use the first one to illustrate the basic
four-step process in any simulation experiment, once we have estimated the
corresponding simulation model:

1. Obtain a source of random numbers.

2. Transform them into inputs to the simulation model.

3. Obtain outputs of the simulation model, stemming from the inputs.

4. Analyse the outputs to reach conclusions.

We devote a section to each of these four steps. Pointers to recent and/or
relevant literature and urls are given.

2 Random number generation

We start by introducing key concepts in random number generation, the basic
ingredient in any simulation analysis. The issue is how to choose a source
that provides a sufficient amount of (pseudo)random numbers to carry out a
simulation experiment.

Sometimes, we may appeal to historical data from the relevant process.
As an example, in a reservoir management problem, see Ŕıos Insua and
Salewicz (1995), we used the available historical time series of inflows for
simulation purposes, as such series was long enough and we had no pos-
sibility of controlling the source of randomness. However, very frequently,
we either lack a sufficiently long series or we want to, somehow, control
the source of randomness. As an example, if we are simulating a computer
centre, one of the typical sources of uncertainty will be the arrival process,
modelled, say, through a Poisson process. Typically, we shall be interested in
studying the performance of the system for a long enough period and under
different conditions. The first issue suggests that we might need to store an
excessive amount of historical data; the second one may imply costly trans-
formations, when we modify the parameters. One possibility would be to use
some physical mechanism to generate random numbers and store them for
later access in some storage device. However, this procedure is too slow in
many application areas.

7

As an alternative, we may use algorithmic procedures for random number
generation. The idea, due to Von Neumann (1951), is to produce num-
bers which seem random using arithmetic computer operations: starting
from an initial seed (u0, u−1, ..., u−p+1), generate a sequence through ui =
d(ui−1, ..., ui−p), for a certain function d. Clearly, once the seed is chosen, the
sequence is determined. For that reason, we adopt the following criteria:

Definition 1 A sequence (ui) is of random numbers if nonoverlapping h-
uples of subsequent numbers are approximately uniformly distributed in (0, 1)h,
for h = 1, 2, ..., n, and n sufficiently large for the application of interest.

Formally, any test applied to a finite part of (ui) which would try to detect
relevant deviations from randomness would not reject the null hypothesis
that the numbers are random.

These properties of uniformity in (0,1) and independence are comple-
mented with others referring to computational efficiency, including, speed; lit-
tle memory consumed; portability; implementation simplicity; reproducibil-
ity; mutability; and, long enough period. The last one is becoming more and
more important as we aim at undertaking more detailed simulations of more
complex systems, which demand longer and longer random number series.

The most popular random number generators are the congruential family,
due to Lehmer (1951). They follow the recursion

xn+1 = (axn + b)mod m,

un = xn/m,

for a multiplier a, a bias b, a module m and a seed x0. When b = 0, they are
called multiplicative. In spite of their apparent simplicity and previsibility, a
careful choice of (a, b, m) allows us to provide sufficiently large and random
series for many purposes. In such sense, the generator

xn+1 = (16807xn)mod (231 − 1),

un = xn/(231 − 1),

originally proposed by Lewis, Goodman and Miller (1969), has become a
minimal standard generator, implemented, e.g. in Press et al (1992).

However, a number of powerful tests have been designed to reject the
randomness of congruential generators (L’Ecuyer, 1998). Such tests explode

8

the reticular structure of the generators. For that reason, and because of the
need to have longer period generators (as an example, the minimal standard
has period 231 − 2, which is insufficient for many purposes), many other
generators have been designed including perturbations of random number
generators, such as shuffling, as in Bays and Durham (1976), shift register
generators, Fibonacci lagged generators, nonlinear generators or mixtures of
generators. As an example, the Splus statistical package implements, among
others, Marsaglia’s Super-Duper algorithm, which combines a multiplicative
and a Tausworthe generator modified to skip outcomes of zero.

In the basic generators introduced so far, the theoretical properties are
easy to analyse because of the highly regular structure. However, this is not
desirable in terms of randomness. Recently, methods that combine genera-
tors from different families have been proposed. They aim at providing better
uniformity properties by reducing the regularity of their structure. Examples
of these methods are combinations of linear congruential/multiple recursive
or Tausworthe generator with any linear or non-linear generator type through
the functions un = (uGen1

+uGen2
) mod 1 or un = BIN(uGen1

) XOR BIN(uGen2
),

respectively. See L’Ecuyer and Granger-Piche (2003) for a full description
and their statistical properties. As an example, one of the most powerful
generator is the Mersenne twister, proposed by Matsumoto and Nishimura
(1998), with period length of 219937 − 1.

Pointers to the literature In general, the practitioner should be really
careful with the random number generator provided in the commercial soft-
ware. They could give wrong answers if the period length is not big enough for
a particular application. For example, SUN’s Java standard library, available
at http://java.sun.com/j2se/1.3/docs/api/java/util/Random.html, has
period length of 248, Visual Basic’s is 224,. . . See L’Ecuyer (2001) and Mc-
Cullough (1999) for a set of tests performed to these popular random number
generators.

Good sources of random number generators are at Statlib at http://www.stat.cmu.edu/.
Other important sites in relation with random number generation are L’Ecuyer’s
page at http://www.iro.umontreal.ca/∼lecuyer and http://random.mat.sbg.ac.at.
A set of statistical tests for random number generators are available at
http://csrc.nist.gov/rng/rng5.html.

9

Case study In our case study, we used the simulation tool Extend, from
Imagine That Inc., which we used as a discrete event simulation environ-
ment. The version we used includes as default random number generator the
minimum standard and Schrage’s (1979) generator as an alternative.

3 Random variate generation

The next step in a simulation experiment is to convert the random numbers
into inputs appropriate for the model at hand. As an example, in our case
study we had to generate variates from a binomial distribution to simulate
the number of illegible documents within a batch; variates from a gamma
distribution to simulate times in modifying a document, and so on. Random
variate generation is essentially based on the combination of six general prin-
ciples: the inversion method, the composition method, the rejection method,
the ratio-of-uniforms method, the use of pretests, the use of transformations
and Markov chain Monte Carlo methods.

The most popular traditional method is based on inversion. Assuming we
are interested in generating from distribution X with distribution function
F , we have available a source U of random numbers and we have an efficient
way to compute F−1, the inversion method goes through

Generate U ∼ U(0, 1)
Output X = F−1(U)

Within Bayesian statistics, see French and Rios Insua (2000), the most
intensely used techniques are Markov chain Monte Carlo (MCMC) methods,
which assume we have found a Markov chain {θn} with state θ and with
its stationary distribution being the (posterior) distribution of interest. The
strategy is then to start from arbitrary values of θ, let the Markov chain run
until practical convergence, say after t iterations, and use the next m observed
values from the chain as an approximate sample from the distribution of
interest.

The key question is how to find Markov chains with the desired stationary
distribution. There are several generic strategies to design such chains. One
of them is the popular Gibbs sampler. Suppose that θ = (θ1, . . . , θk). The
simplest version of the Gibbs sampler requires efficient sampling from the
conditional distributions (θ1 | θ2, ..., θk), (θ2 | θ1, θ3, ..., θk),..., (θk | θ1, θ2, ...,
θk−1). Starting from arbitrary values, the Gibbs sampler iterates through the

10

conditionals until convergence:

1. Choose initial values (θ0
2, . . . , θ

0
k). i = 1

2. Until convergence is detected, iterate through

. Generate θi
1 ∼ θ1|θi−1

2 , .., θi−1
k

. Generate θi
2 ∼ θ2|θi

1, θ
i−1
3 , ..., θi−1

k

. ...

. Generate θi
k ∼ θk|θi

1, ..., θ
i
k−1.

. i = i + 1

This sampler is particularly attractive in many scenarios, because the
conditional posterior density of one parameter given the others is often rel-
atively simple (perhaps after the introduction of some auxiliary variables).
Given its importance, we provide a simple example from Berger and Ŕıos
Insua (1998).

Example Suppose the posterior density is

pθ(θ1, θ2 | x) =
1

π
exp{−θ1(1 + θ2

2)}

over the set θ1 > 0, −∞ < θ2 < ∞. The posterior conditional distribution
of θ2, given θ1, is normal with mean zero and variance 1/2θ1, since

pθ2
(θ2 | θ1, x) ∝ p(θ1, θ2 | x) ∝ exp(−θ1θ

2
2).

Similarly, given θ2, θ1 has exponential distribution with mean 1/(1 + θ2
2).

Then, a Gibbs sampler for this problem iterates through:

1. Choose initial value for θ2; e.g., the posterior mode, θ0
2 =

0. i = 1

2. Until convergence, iterate through

. Generate θi
1 = E/(1 + [θi−1

2]2), (E, standard exponential).

. Generate θi
2 = Z/

√
2θi

1, (Z, standard normal).

Other strategies to design Markov chains with a desired stationary distri-
bution are the Metropolis-Hastings algorithm, the perfect sampler, the slice
sampler, random direction interior point samplers,... Complex problems will

11

typically require a mixture of various MC algorithms, known as hybrid meth-
ods. As an example, Müller (1991) suggests using Gibbs sampler steps when
conditionals are available for efficient sampling and Metropolis steps other-
wise. For variable dimension problems, reversible jump (Green, 1995) and
birth-death (Stephens, 2000) samplers are very relevant strategies.

Pointers to the literature The literature in modern MCMC methods is
vast. Good introductions to Bayesian computations methods may be seen
in Smith (1990) and Johnson and Albert (1999). Extensive developments
may be seen in French and Ŕıos Insua (2000), Tanner (1996) and Gamerman
(1997). Cheng (1998) contains information about standard methods.

As far as software is concerned, the Numerical Recipes (Press et al, 1992,
or http://www.nr.com) include code to generate from the exponential, nor-
mal, gamma, Poisson and binomial distributions, from which many other
distributions may be sampled based on the principles outlined above. Many
generators are available at http://www.netlib.org/random/index.html.
WINBUGS (Spiegelhalter et al, 1994) and OpenBUGS is downloadable from
http://www.mrc-bsu.cam.ac.uk/bugs, facilitating MCMC sampling in many
applied settings. Another useful library is GSL, available at http://www.gnu.org/software/gsl.

Case study As mentioned, we have used Extend for our case study, which
includes samplers for the beta, binomial, constant, Erlang, exponential, gamma,
geometric, hyperexponential, discrete uniform, lognormal, normal, Pearson,
Poisson, continuous uniform, triangular and Weibull distributions. This al-
lows us to deal with most of the distributions in our model, except for cases
like mixtures.

In general, a mixture f is expressed as

f(x) =
n∑

i=1

pi · g(x|y = i) =
n∑

i=1

pi · gi(x)

with pi = P (Y = i) > 0, for all i = 1, ..., n,
∑

i pi = 1 and gi, density func-
tions. The procedure to generate from such distribution is

Generate i ∼
(

p1 p2 · · · pn

1 2 · · · n

)

Output X ∼ gi

12

4 Obtaining model outputs

The third step in a simulation process consists of passing the inputs through
the simulation model to obtain outputs to be analysed later. We shall con-
sider the two main application areas in Industrial Statistics: Monte Carlo
simulation and discrete event simulation.

4.1 Monte Carlo simulation models

A key group of simulation applications in Industrial Statistics use Monte
Carlo simulation. By these we understand standard deterministic problems
whose analytic solution is too complex, but such that by introducing some
stochastic element we are able to obtain a solution with reasonable compu-
tational effort. Within statistics, we may use MC methods for optimisation
purposes (say to a obtain an MLE or a posterior mode); for resampling
purposes, as in the bootstrap; within MC hypothesis tests and confidence
intervals; for computations in probabilistic expert systems,... the key appli-
cation being Monte Carlo integration, specially within Bayesian statistics.
We therefore illustrate it in some detail.

Suppose we are interested in computing

IS =
∫

[0,1]s
f(u)du

where [0, 1]s is the s-dimensional unit hypercube. We have many numerical
methods for such purpose, but they tend to be inefficient as the dimension s
grows. As an alternative, we may use simulation based integration methods,
or Monte Carlo integration methods, whose (probabilistic) error bound is
dimension independent, therefore making them competitive as the integral
dimension grows. To wit, note first that

IS = E(f)

where the expectation is taken with respect to the uniform distribution. We,
therefore, suggest the strategy, based on the Strong Law of Large Numbers:

Sample u1, . . . , uN ∼ U [0, 1]s

Approximate ÎS = 1
N

∑N
i=1 f(ui)

13

Within Bayesian analysis, we are frequently interested in computing pos-
terior moments as in

Eθ|x(g(θ)) =
∫

g(θ)π(θ|x)dθ.

where

π(θ|x) =
p(x|θ)π(θ)

∫
p(x|θ)π(θ)dθ

,

is the posterior distribution for an observation x, π(θ) is the prior, p(x|θ)
is the model. As an example, when g(θ) = θ, we have the posterior mean,
whereas when g(θ) = IA(θ), we have the posterior probability of A. To com-
pute them, we may use an MC approximation as in

Sample θ1, ..., θN ∼ π(θ|x)

Do ̂Eθ|x(g(θ)) = 1
N

∑N
i=1 g(θi)

Sampling will generally be done through a Markov chain algorithm.
To sum up, assume we want to estimate θ = E(X) through Monte Carlo

integration. If it is simple to sample from X, our output process consists of
the values Xi sampled from the distribution of X. We have that FX = FXi

,
so that FX = limi→∞FXi

and θ = EFX
(X). If, on the other hand, it is not

easy to sample from X, we may define a Markov chain Xi
d−→ X, so that

FX = limi→∞ FXi
, our output process being again Xi.

Example Following with our Gibbs sampler example, typically, we shall
be interested in approximating posterior expectations of functions g(θ1, θ2)
through

Eθ[g(θ1, θ2) | x] =
∫ ∞

−∞

∫ ∞

0
g(θ1, θ2)p(θ1, θ2 | x)dθ1dθ2

∼= 1

m

m∑

i=1

g(θi
1, θ

i
2).

For example, under squared error loss, we estimate θ1 by its posterior mean,

approximated by θ̂1 = 1
m

m∑
i=1

θi
1. The output process in this case will be

(θi
1, θ

i
2).

14

4.2 Discrete event simulation models

The other big application area refers to discrete event simulation (DES),
which deals with systems whose state changes at discrete times, not contin-
uously. These methods were initiated in the late 50’s; for example, the first
DES-specific language, GSP, was developed at General Electric by Tocher
and Owen to study manufacturing problems. To study such systems, we
build a discrete event model. Its evolution in time implies changes in the
attributes of one of its entities, or model components, and it takes place
in a given instant. Such change is called event. The time between two in-
stants is an interval. A process describes the sequence of states of an entity
throughout its life in the system.

There are several strategies to describe such evolution, which depend on
the mechanism that regulates time evolution within the system. When such
evolution is based on time increments of the same duration, we talk about
synchronous simulation. When the evolution is based on intervals, we talk
about asynchronous simulation.

We illustrate both strategies describing how to sample from a Markov
chain with state space S and transition matrix P = (pij), with pij = P (Xn+1 =
j|Xn = i). The obvious way to simulate the (n+1)-th transition, given Xn, is

Generate Xn+1 ∼ {pxnj : j ∈ S}

This synchronous approach has the potential shortcoming that Xn = Xn+1,
with the corresponding computational effort lost. Alternatively, we may
simulate Tn, the time until the next change of state and, then, sample the
new state Xn+Tn

. If Xn = s, Tn follows a geometric distribution of para-
meter pss and Xn+Tn

will have a discrete distribution with mass function
{psj/(1 − pss) : j ∈ S \ {s}} . Should we wish to sample N transitions of the
chain, assuming X0 = i0, we do

15

Do t = 0, X0 = i0
While t < N

Sample h ∼ Ge(pxtxt
)

Sample Xt+h ∼ {pxtj/(1 − pxtxt
) : j ∈ S \ {xt}}

Do t = t + h

There are two key strategies for asynchronous simulation. One is that
of event scheduling. The simulation time advances until the next event
and the corresponding activities are executed. If we have k types of events
(1, 2, ..., k) , we maintain a list of events, ordered according to their execu-
tion times (t1, t2, ..., tk) . A routine Ri associated with the i-th type of event
is started at time τi = min (t1, t2, ..., tk) . An alternative strategy is that of
process interaction; a process represents an entity and the set of actions that
experiments throughout its life within the model. The system behaviour may
be described as a set of processes that interact, for example, competing for
limited resources. A list of processes is maintained, ordered according to the
occurrence of the next event. Processes may be interrupted, having their
routines multiple entry points, designated reactivation points.

Each execution of the program will correspond to a replication, which
corresponds to simulating the system behaviour for a long enough period of
time, providing average performance measures, say Xn, after n customers
have been processed. If the system is stable Xn

w−→ X. If, e.g., processing
1000 jobs is considered long enough, we associate with each replication j
of the experiment the output Xj

1000. After several replications, we would
analyse the results as described in the next section.

4.2.1 Discrete event simulation software

The implementation of complex simulation models with several types of
events and processes in standard programming languages may be very in-
volved. This would explain the emergence of numerous simulation environ-
ments, as shown in the recent software simulation review in OR/MS Today
(2003), which is periodically adapted. These include simulation languages
and simulators.

Simulation languages are general purpose languages which include tools
and utilities specific for simulation, such as

16

• A general framework to create and describe a model in terms of processes,
events, entities, attributes, resources and interactions between model
components.

• A mechanism to control the evolution of time.

• Methods to schedule event occurrences.

• Random number and variate generators.

• Tools to collect and analyse data.

• Tools to describe and display graphically the model and its simulation.

• Tools to validate and verify the model.

Simulators are software packages which allow for the simulation of com-
plex models in specific application areas, such as manufacturing, supply chain
management, material handling, workflow management, of interest in indus-
trial statistics. Examples of this packages are Arena, Taylor II, Extend,
AutoMod,. . .

Case study We now illustrate the implementation of our reference exam-
ple in a DES environment, specifically in Extend. In the DES terminology,
the processes that we shall consider are the lots and the lot arrival generator
and the resources will be the scanners, the program, the operators and their
workstations. To facilitate implementation we associate seven numerical at-
tributes, which establish the different types of documents, that a lot may
include within its life in the system:

• Lot headers (R).

• Bills and receipts (L).

• Promissory notes (P).

• Bill and receipts wrongly scanned or illegible (LC).

• Bills and receipts wrongly recognised (LD).

• Promissory notes wrongly scanned or illegible (PC).

17

• Promissory notes wrongly recognised (PD).

For each stage in the line, we must model the process occurring at that
stage, the involved random processes, the parameters to be estimated and
the controllable parameters. As an example, we provide that of the scanning
process:

• Description. Scanning is done by lots. Once scanned, there is a waiting
period of around 10 seconds, before we may feed them in a new lot. The
technical specifications suggest a scanning speed of 4.17 documents per
second.

• Random processes. We need to consider the failure distribution for
the scanner. We use a binomial model for each type of document,
x ∼ BIN(L, Ps) , y ∼ BIN(P, Ps) (where Ps, is the probability of a
document incorrectly scanned, x is the number of illegible bills and y
is the number of illegible promissory notes). The estimated scanning
time per lot is, therefore: L+P+R

4.17
+ 10 seconds.

• Parameter estimation We use a beta-binomial to estimate Ps. With
a uniform prior, the posterior is beta (84, 9916), the posterior mode
being P̂s = 0.0085.

• Controllable parameters One person and two scanners are used in this
phase. One of the scanners is for backup.

The above stage may be described in Extend as follows The first block in
the figure is called (in the Extend jargon) Dequation, which computes an
expression given the input values; in this case it will compute the scanning
time for the lot, as indicated above. Then, the items go through an element
called Queue-Fifo, which represents a queue in which we store and leave
elements according to a FIFO strategy. Then, they go through an Activity
Delay, which will keep elements for some time, in this case the scanning
time. Then, the item leaves that block and goes through a Dequation used
to obtain the time that the element remained in queue before leaving the
Activity Delay. Items go afterwards through a Dequation which computes
the attribute LC, through a binomial model. The next Dequation modifies
the attribute L. The next two Dequation blocks affect PC and P.

The whole line is described in the following diagram

18

Figure 1: Block modelling the scanning stage

Clearly, this is too complicated to describe to a practicioner, but we may use
appropriate icons to summarise the model as presented in the diagram

Each run of this simulation model will provide outputs in relation to a
day of operation.

5 Output analysis

The final stage of a simulation experiment consists of the analysis of the
output obtained through the experiment. To a large extent, we may use
standard estimation methods, point estimates and precision measures, with
the key observation that the output might be correlated. Clearly, as we
deal with stochastic models, each repetition of the experiment will lead to a
different result, provided that we use different seeds to initialise the random
number generators at each replication.

The general issue here is to provide information about some performance
measure θ of our system. We shall only comment in some detail the case of
univariate performance measures. We assume that the simulation experiment
provides us with an output process X = {Xi}, so that θ is a property of the
limit distribution FX = limi→∞ FXi

. In fact, most of the times, we shall be
able to redefine the output process so that θ is the expected value of X, that
is,
∫∞
−∞xdFX(x), or the p-th quantile, that is, the value xp such that FX(xp) =

p, for p ∈ (0, 1). For example, if we are interested in estimating the covariance
between two variables X, Y , θ = σXY =

∫ ∫
(X − µX)(Y − µY)dFXY (x, y),

19

Figure 2: The whole workflow line in Extend

we may define the bivariate output process
{
(Xi − X̄), (Yi − Ȳ)

}
, where X̄,

Ȳ are the sample means of X, Y . Sometimes, we are interested in estimating
the whole distribution of a system performance measure, which may be done
by estimating the parameters of a (parametric) distribution. Alternatively,
we may estimate a sufficient number of quantiles so as to approximate the
distribution function.

Another important issue is the distinction between stationary and tran-
sition behaviour. In fact, it determines the way to carry out the simulation
experiment and the way of analysing data. Transition behaviour refers to
short-term system performance. In our example, we are interested in whether
we shall be able to complete the workload before the deadline. Stationary
behaviour refers to long term performance. In our example, we are interested
in the fraction of bags not processed on time due to the system being busy, or
we may be interested in determining the long-term fraction of lost messages
due to the system being saturated (see e.g. Conti et al., 2004).

5.1 Point estimation

As far as point estimation is concerned, standard methods and concepts like
unbiasedness and consistency apply. For obvious reasons, the concept of
asymptotic unbiasedness is specially relevant, when dealing with stationary

20

Figure 3: The workflow line

performance.
In that sense, in order to estimate the mean µX = limi→∞ µXi

, we shall
normally use the sample mean

X̄ =

∑n
i=1 Xi

n
.

To estimate proportions or probabilities, we use the sample mean of the
indicators of the event of interest. Specifically, if A is such event, we define
Zi = I{Xi∈A}, and use

Z̄ =

∑n
i=1 Zi

n
=

#{Xi ∈ A}
n

to estimate P (X ∈ A). In order to estimate the variance

σ2
X =

∫ ∞

−∞
(x − µX)2dFX(x),

we shall compute X̄, {(Xi − X̄)2} and use

S2
X =

1

n − 1

n∑

i=1

(Xi − X̄)2

21

which is unbiased for iid observations, and asymptotically unbiased in gen-
eral; for small samples, and correlated output we may use various methods
to correct the bias.

As far as quantiles are concerned, if {X(i)} is the order statistic associated
with the output {Xi}, a simple estimator of F−1

X (p) is

(1 − α)X(r) + αX(r+1),

with α = p(n+1)− int(p(n+1)) and r = int(p(n+1)). An alternative for si-
multaneous estimation of several quantiles is to use the histogram. Although
we loose some information while computing the counts in the histogram cells,
we usually obtain good results with small cells, in spite of the inconsistency of
histograms of fixed width, see Hartigan (1996) for references on histograms.

Before finishing this section, we would like to point out three possible
sources of bias in these estimators: the initial transition (linked with the
problem of convergence detection, see Cowles and Carlin (1996) for a review),
nonlinearity of transformations and random sample sizes.

5.2 Precision estimation

We also need to estimate the precision of the estimator. We shall use the
mean square error which, when the bias is negligible, will coincide with
the variance. As basic measure, we shall use the standard deviation of θ̂,
EE(θ̂) = (V ar(θ̂))1/2 and we aim at estimating ÊE(θ̂) or, equivalently,
V̂ ar(θ̂). In such a way, when we say that θ̂ = 16.3289 with ÊE(θ̂) = .1624,
we may find meaningful 16, give some validity to .3 (for example, 16.3 is
more meaningful than 15.8) and consider 0.0289 as random digits.

In the iid case, we use the standard variance estimation theory. For
example, when θ̂ = X̄, with fixed n, V ar(X̄) = V ar(Xi)

n
and an estimator is

S2/n, where

S2 =

∑n
i=1 X2

i − nX̄2

n − 1
(1)

is the sample variance. If N is random and independent of the observations,
V ar(X̄) = V ar(Xi)

E(N)
and an unbiased estimator is V̂0 = S2/N , with S2 as before

and N in place of n, with N ≥ 2.
If we are estimating p = P (A), we use

θ̂ = p̂ =

∑N
i=1 I{Xi∈A}

N

22

with N , possibly random, but independent of the observations. We have that
V ar(p̂) = (p(1 − p))/E(N) and

ˆV ar(p̂) =
p̂(1 − p̂)

N − 1
.

is an unbiased estimator.
Similarly, we would proceed for other estimators. A shortcoming of this

approach is that it is, somewhat, ad hoc in the sense that we need to develop
methods for each estimator. An alternative general (and popular) variance
estimation method in simulation is that of macro-micro replications. Given n
replications, we actually assume that it consists of k independent macrorepli-
cations with m micro replications (X1j, ..., Xmj), j = 1, ..., k, and km = n.
Each micro replication provides an observation of the output process; each
macro replication provides an estimator θ̂j, j = 1, ..., k, based on the m ob-

servations of such replication, with the same expression as θ̂. The mean of
the k macro replications, that is,

θ̄ =
1

k

k∑

j=1

θ̂j,

is an alternative to the estimator θ̂. Clearly, when m = n, k = 1, θ̂ = θ̄. As
θ̄ is a sample mean, its variance will be estimated through

V̂1 =
1

k

∑k
j=1 θ̂2

j − kθ̄2

k − 1
.

For a discussion on how to choose m and k, see Schmeiser (1990). Recall
also, that the bootstrap and the jackknife, see Efron (1982), provide methods
to estimate the variance.

5.3 Dependent output

We need to be specially careful when simulation output is correlated, as it
happens in an MCMC sampler. To illustrate the issues involved, assume
that (X1, ..., Xn) are observations from a stationary process and we estimate
θ through X̄. If V ar(X) = σ2

X and ρj = Corr(Xi, Xi+j) we have

V ar(X̄) =
d σ2

X

n

23

with

d = 1 + 2
n−1∑

j=1

(
1 − j

n

)
ρj.

In the i.i.d., d = 1. When the process is positively correlated V ar(X̄) > σ2/n.
Moreover,

E

(
S2

n

)
=

e σ2
X

n

with

e = 1 − 2

n − 1

n−1∑

j=1

(
1 − j

n

)
ρj

so that we underestimate the variability of X̄. Similarly, if the process in
negatively correlated, we shall overestimate it.

To mitigate the problem, several methods have been devised. The most
popular is that of macro-micro replications, known as batch method for de-
pendent data; correlation substitution; time series methods; regenerative
simulation; and, thinning. Further details may be seen in Balci (1994) and
Ŕıos Insua et al (1997).

5.4 Confidence intervals

We shall usually employ V ar(θ̂) to obtain a confidence interval for θ: we aim
at using the output process (X1, ..., Xn) to obtain a random interval [L,U] so
that P ({L ≤ θ ≤ U}) = 1 − α for some α. The standard confidence interval
theory applies, with convenient modifications to take into account the issue
of dependent data and the various methods used to estimate the precision.

Pointers to the literature We have concentrated on analysing only one
performance measure. Multiple performance measures require special care
when defining multiple confidence intervals, which is done through Bonferroni
type inequalities, see Rios Insua et al (1996) for further details.

Special care must be adopted when using simulation software, since,
rather frequently, it provides precision measures under the hypothesis of inde-
pendence. Beware. Alternatively, you may use your favourite statistical envi-
ronment to undertake this task, if it allows for time series analysis data, after
preparation of simple programs. Convergence detection is an important issue,
for which CODA http://www.mrc-bsu.cam.ac.uk/bugs/classic/coda04/readme.shtml

24

is useful. Fishman (1996) provides ample information about his LABATCH
package available at http://www.unc.edu/ gfish/labatch.2.html. The
MCMCpack also contains some useful utility functions, and is available at
http://www.r-project.org.

The example Assume we want to approximate I =
∫∞
−∞(x + x2)f(x)dx,

where f is a normal density with mean 1 and standard deviation 2. We used
Monte Carlo integration and repeated the experiment 50 times with sample
size 50 at each iteration. The obtained values are

6.769 5.603 5.614 9.229 7.189 3.277 4.312 7.070 5.195 4.496
5.775 4.646 5.670 7.134 4.931 4.403 6.783 7.152 5.834 4.958
7.159 7.270 8.379 5.037 5.143 5.757 7.399 5.236 4.749 5.729
7.015 6.156 3.985 5.643 5.720 6.878 6.367 7.520 7.093 6.605
6.356 6.567 7.784 5.256 6.302 5.460 4.808 5.880 3.846 5.962

Table: approximations of I

Note that if we use just one replication, we may obtain very disparate values,
from 3.277 to 9.229. We use the sample mean as estimator, which is, 5.983.
The mean square error is 1.475. Note that I = 6.

Case study As we indicated, our interest is in estimating the probability
that the process is completed before the deadline, in our case 28800 seconds,
that is we need to estimate Pr(T ≤ 28800) for each configuration line. For
that, we shall perform 1000 replications, equivalent to 1000 days of operation,
and we record whether the process finishes before 28800 seconds. The output
process is therefore Ni, where Ni = 1 if Ti ≤ 28800 and 0 otherwise, where Ti

is the final time of the i-th iteration. Therefore, we estimate the probability
through ∑1000

i=1 Ni

1000

To complete the study, we record other output values, specifically average
waiting times at each queue and average times at each process, twenty two
outputs on the whole.

We show below the statistics generated by Extend after simulating 1000
days under the current configuration,

• Probability of finishing work on time: 0.441

25

• Average finishing time: 31221.1 sec.

Device Lot Av. que. time Lot Av. resp. time
Scanner 5.93 41.03
OCR 3779.69 3861. 32
Recording 0 1888.72
Illegible resolution 0.75 11.21
Coding 961.33 1038.89
Date verification 59.83 87.23
Field verification 6183.34 6325.18
Quality verification 44.79 1836. 54
Balancing 1.75 1.77
Modification 5.64 123.23

Note that the probability of timely completion is too low (0.44) and the
average finishing time (31221) is much bigger than the allowed one (the
respective mean square errors, were 0.12 and 925). Note that the biggest
waiting times hold for the OCR and field verification, the main bottlenecks.

We, therefore, reconfigure the system, doubling the resources in the OCR
phase and field verification. This leads to the following results:

• Probability of finishing process on time: 0.941

• Average finishing process time: 21881.1 sec.

Device Lot Av. que. time Lot Av. resp. time
Scanner 6.05 41.15
OCR 454.17 541.34
Recording 369.27 2465.18
Illegible resolution 1.79 12.18
Coding 2608.79 2685.28
Date verification 83.29 110. 64
Field verification 1351.67 1478.59
Quality verification 2179.06 2280.67
Balancing 0.154 1.73
Modification 68.93 131.21

26

As we see, the modifications induce a reduction in the modified stages and,
more importantly, have been sufficient to guarantee completion of the process
(probability .94). Note, as well, that the average queueing times have been
balanced, therefore attaining a more balanced load. Note that some processes,
like recording, have increased their time. However, the design is globally
much better.

As we have indicated, the previous results allow us to answer the initial
question. To complete the study, we could investigate the performance under
more extreme work conditions. For example, we could study the possibility
of expanding our business, looking for new customers.

As an example, suppose that five vans od documents arrive every day
(the current workload is randomly distributed between one and four). The
resulting statistics would be:

• Probability of finishing on time: 0.26

• Average finishing time: 30569

Device Lot Av. que. time Lot Av. Resp. time
Scanner 5.81 40.91
OCR 638.89 723.92
Recording 629.56 2748.63
Illegible resolution 1.91 12.51
Coding 3766.47 3842.59
Date verification 87.56 114.95
Field verification 1823.13 1952.27
Quality verification 3228.38 3330.5
Balancing 0.13 1.84
Modification 72.99 135.37

As we see under such extreme conditions, the average processing time is
much worse and there is little guarantee of completing the process on time
(0.264). Hence it does not seem advisable to expand business so much.

6 Tactical questions in simulation

We end up this review by pointing out issues concerning tactical questions
in simulation: how do we design simulation experiments, how do we combine
simulation with optimisation; the issue of variance reduction.

27

6.1 The number of iterations

We briefly discuss now the issue of determining the appropriate number n of
replications, which, on one hand, will affect the estimation precision and, on
the other, will affect computational cost. As normally, variance estimators
are O(n−1), the basic idea will be to take n sufficiently large to guarantee
a certain precision. Note that an initial idea about n somehow limits our
computational effort, whereas if we view it excessive, we may try to apply
variance reduction techniques. We briefly illustrate the ideas in the simplest
case.

Suppose we may observe n times the output process Xi and X1, ..., Xn are
i.i.d. with E(X) = θ, V ar(X) = σ2. We use X̄ = (1/n)

∑n
i=1 Xi and S/

√
n,

with S2 = (1/(n − 1))
∑n

i=1(Xi − X̄)2, respectively as the estimator and the
precision of the estimator. To determine n, we fix 1 − α as an acceptable
confidence level. For n sufficiently large

[
X̄ − zα/2

S√
n

, X̄ + zα/2
S√
n

]

is a confidence interval of level (1 − α) and width 2zα/2S/
√

n. If we fix the
maximum allowed width as d, we just need to do

2zα/2
S√
n

≤ d

or

(
2zα/2

S

d

)2

≤ n.

Sometimes we have an initial idea about σ or S, which we may use to suggest
an initial size. If this is not the case, we may use a pilot sample to estimate
S and apply the previous method; typically we shall need to iterate with an
argument such as follows, where Sn is the sample variance when the size is n

Do n0 = 30
Generate {Xj}30

j=1

Compute S30, i = 0
While 2zα/2Sni

/
√

ni > d
i = i + 1

28

Compute min ni :
(
2zα/2

Sni−1

d

)2
≤ ni

Generate {Xj}ni

j=ni−1+1

Compute Sni

Example We apply the previous procedure to the case in which we try to
estimate ∫ ∞

−∞
(x + x2)f(x)dx,

with f the normal density N(1, 4). The table includes the results when
α = 0.005 and d = 0.1.

n Î S Width
30 5.06 5.22 5.216

85849 5.996 8.2 .158
212521 6.005 8.27 .101
216225 6.003 8.26 .099

For the general case, we shall use confidence intervals
[
θ̂ − tν,α/2

√
V̂ , θ̂ + tν,α/2

√
V̂
]

where θ̂ is the estimator of interest and V̂ is a variance estimator with χ2

distribution with ν degrees of freedom and independent of the distribution
of θ̂. Typically, V̂ depends on n, that is V̂ = V̂ (n). Moreover, ν = ν(n)
frequently, so that

2tν(n),α/2V̂ (n) ≤ d

which we solve for n. The former sequential procedure may be extended
easily, specially if the distribution of tν(n) may be approximated through a
normal distribution with ν(n) ≥ 30.

6.2 Regression metamodels

In most simulation based industrial statistical applications, we shall be in-
terested in either understand the behaviour of a system, i.e. how changes
in operation conditions affect performance, or improve its functioning. Al-
gebraically, we describe the relation of the output z0 of the real system with
the inputs y1, y2, ... through a function

z0 = f0(y1, y2, ...; R0)

29

where R0 designates the sources of randomness in a generic form. We identify
those inputs that we consider relevant y1, y2, ..., yk and describe the relation
between the model output z1 and the inputs through the function

z1 = f1(y1, y2, ..., yk; R1)

where R1 designates the randomness sources of the model, our objective
being to estimate

θ(y1, ..., yk) = ER1
(f1(y1, ..., yk; R1))

when computing such expectation is difficult we may appeal to simulation
to estimate θ(y1, ..., yk). For such purpose, the relation between the output
(Xi)

n
i=1 and the inputs through a simulation program, is through a function

X(y1, ..., yk) = f2(y1, ..., yk; R2)

where R2 designates the random seeds used to initialise the random number
generators.

The tools previously described allow us to estimate the performance
θ(y1, ..., yk), given the inputs, together with a precision measure. Analo-
gously, should we be interested in determining optimal inputs we should
solve

min θ(y1, ..., yk)

under appropriate constraints. One possibility would be to use an optimi-
sation algorithm requiring only function evaluations, such as Nelder Mead’s,
estimating the function at each new input value, through the simulation
algorithm, see Ŕıos Insua et al (1997), for an example.

This approximation may be extremely costly from a computational point
of view. In this case, it may be more interesting to associate to the problem
a new model called regression metamodel. For that, we just need to represent
the estimation problem in such a way that if Z3(y1, ..., yk) = θ̂(y1, ..., yk) we
introduce the representation

Z3 = f3(y1, ..., yk, δ) + ǫ (2)

where f3 represents a parametric function with parameters δ to be estimated
and an error term ǫ. An example, based on neural networks may be seen in
Muller and Ŕıos Insua (1998). We may then use the regression metamodel
for prediction and optimization purposes as wished.

30

The optimisation problem is described as

min θ0 = ER(f0(y1, ..., yk; R))

s.t. θi = ER(fi(y1, ..., yk; R)) ≤ bi, i = 1, ..., r

(y1, ..., yk) ∈ S

where R designates the randomness sources, r designate output constraints,
and the last constraint refers to inputs. We have a simulation model with m
responses of interest θ̂i = fi(y1, ..., yk; R), i = 0, 1, ..., r, where, as before, R
designates the employed random numbers.

We end up this section mentioning that a number of specific simulation-
optimisation methods have been developed. In the case of finite sets of al-
ternatives, we should mention, on one hand, methods based on ranking and
selection and, on the other, based on multiple comparisons. Among meth-
ods for continuous problems, we should mention response surface methods
and stochastic approximation methods such as Robbins-Monro (1951) and
Kiefer-Wolfowitz (1952). Other methods include algorithms based on per-
turbation analysis (Glasserman, 1991) and on likelihood ratios (Kleijnen and
Rubinstein, 1996).

6.3 Experimental design and simulation

We have described simulation as a (computer based) experimental method-
ology. As such all principles for good experimentation, as reviewed in the
design of experiments chapter in this book, seem relevant. Further details
may be seen in Box et al (1978) and Chaloner and Verdinelli (1995).

An important difference with other types of experiments refers to the key
point that we control the source of randomness, and we may take advantage
of it. As an example, in simulation we have the common random number
technique, which uses the same random numbers for simulations under dif-
ferent input conditions.

6.4 Variance reduction

We have emphasised the need to have quality measures of simulation estima-
tors through precision estimates. In such respect, it seems natural to improve
the quality of estimators, typically looking for estimators with similar bias

31

but smaller variance. The techniques addressed towards such purpose are
called variance reduction techniques.

Given a basic simulation experiment, the idea is to introduce another
experiment, in which sampling is done differently or in which we observe
a different output variable, which leads to a better quality estimator. A
trivial observation is that, we may reduce the variance by augmenting the
sample size n, as we have seen that variance estimators are O(n−1). But this
entails an increase in computational effort, which may be unacceptable in
many cases. The objective would be, on the other hand, to reduce the mean
squared error, keeping the computational effort, or reduce the computational
effort, keeping the mean squared error.

For that purpose, several techniques have been developed including anti-
thetic variates, control variates, conditioning, importance sampling, common
random numbers and stratified sampling. Computational savings may be
tremendous, however its application is far from simple, frequently demand-
ing ingenuity and small pilot samples to ascertain whether we may achieve,
in effect, a variance reduction.

We end up this section mentioning that, again, variance reduction is a
topic which is in the border between simulation and experimental design.

7 Discussion and conclusions

We have provided an illustrated introduction to key concepts and methods
in simulation, as far as Industrial Statistics is concerned. Further details
may be seen in various texts including Fishman (1996, 2000), Rios Insua et
al (1996), Banks (1998) or Schmeiser (1990). We hope that these lines will
provide the reader with a broad view of simulation methods and applications
to eventually apply them at his industrial problem at hand.

Discrete event simulation is one of the most used techniques in Business
and Industrial Statistics in problems such as manufacturing systems, LAN
modelling,... in which performance of a system whose state evolves discretely
in time may not be computed analytically. The standard approach proceeds
by building a simulation model; estimating the model parameters; plugging
the estimates into the model; running the model to forecast performance
evaluation and analysing the output. However, although this has not been
acknowledged in the DES literature, this approach typically greatly underes-
timates uncertainty in predictions, since the uncertainty in the model para-

32

meters is not taken into account, by assuming parameters fixed at estimated
values. In other fields, this issue of input uncertainty influencing model un-
certainty has generated a relevant literature, see, for example, Draper (1995)
or Chick (2001). Applying Bayesian methods in discrete event simulation
seems a fruitful area of research.

Note that we have not practically mentioned continuous time simulations,
typically based on stochastic differential equations. Typically, a synchronous
approach will be adopted. See Neelamkavil (1987) for further information.

We finally provide some additional pointers to urls of interest, referring to
on-line executable simulations, http://www.cis.ufl.edu/∼fishwick/websim.html

and http://www.national.com/appinfo/power/webench/websim/

Acknowledgments

This work was supported by funds under the European Commission’s Fifth
Framework ’Growth Programme’ via Thematic Network “Pro-ENBIS”, con-
tract reference G6RT-CT-2001-05059, and by grants from MEC and the
DMR Consulting Foundation.

REFERENCES

Atkinson, A.C. and Donev, A.N. (1992). Optimum Experimental Designs,
Oxford University Press, Oxford.

Balci, O. (ed) (1994). Simulation and Modelling, Annals of Operations
Research, 53.

Banks, J. (1998). Handbook of Simulation, Wiley, New York.

Bayarri, M.J., Berger, J.O., Garcia-Donato, G., Palomo, J., Sacks, J. and
Walsh, D. (2004). Computer model validation with functional output,
Tech. Rep. NISS, Research Triangle Park.

Bays, C. and Durham, S. (1976). Improving a poor random number gener-
ator, ACM Transactions in Mathematical Software, 2, 59-64.

Berger, J.O., Garcia-Donato, G. and Palomo, J. (2004). Validation of Com-
plex Computer Models with Multivariate Functional Outputs, Tech.
Rep. SAMSI, Durham.

33

Berger, J.O. and Ŕıos Insua, D. (1998). Recent developments in Bayesian
Inference, with applications in Hydrology, Statistical and Bayesian Meth-
ods in Hydrology, UNESCO Press.

Box, G.E.P., Hunter, W.G. and Hunter, J.S. (1978). Statistics for Experi-
menters, Wiley, New York.

Bratley, P., Fox, B. and Schrage, L. (1987). A Guide to Simulation, Springer,
New York.

Chaloner, K. and Verdinelli, I. (1995). Bayesian experimental design: A
review, Statistical Science, 10, 273-304.

Chick, S.E. (2001). Input Distribution Selection for Simulation Experi-
ments: Accounting for Input Uncertainty, Operations Research, 49,
744-758.

Conti, P.L., Lijoi, A. and Ruggeri, F. (2004). A Bayesian approach to the
analysis of telecommunication systems performance, Applied Stochastic
Models in Business and Industry, 20, 305-321.

Cowles, K. and Carlin B. (1996). Markov chain Monte Carlo convergence
diagnostics, Journal of the American Statistical Association, 91, 883-
904.

Draper (1995). Assessment and propagation of model uncertainty (with
discussion), Journal of the Royal Statistical Society, B, 57, 45-97.

Efron, B. (1982). The Jackknife, the Bootstrap and other Resampling Plans,
SIAM, Philadelphia.

Extend, official web page. http://www.imaginethatinc.com

Fishman, G. S. (1996). Monte Carlo: Concepts, Algorithms and Applica-
tions, Springer, New York.

French, S. and Ŕıos Insua, D. (2000). Statistical Decision Theory, Arnold,
London.

Fu, M.C. (1994). Optimization via simulation, Annals of Operations Re-
search, 53, 199-248.

34

Gamerman, D. (1997). Markov Chain Monte Carlo: Stochastic Simulation
for Bayesian Inference, Chapman & Hall, New York.

Glasserman, P.(1991). Gradient Estimation via Perturbation Analysis, Kluwer,
Boston.

Green, P. (1995). Reversible jump Markov Chain Monte Carlo computation
and Bayesian model determination, Biometrika, 82, 711-732.

Hartigan, J. (1996). Bayesian histograms., in Bayesian statistics 5 (J.
Bernardo, J. Berger, A. Dawid, and A. Smith eds.), 211-222, Oxford
University Press, Oxford.

Imaginethatinc (2000). Extend Manual, Imagine That Inc.

Johnson, V.E. and Albert, J.H. (1999). Ordinal Data Modeling, Springer,
New York.

Kiefer, J. and Wolfowitz, J. (1952). Stochastic estimation of the maximum
of a regression function, Annals of Mathematical Statistics, 23, 462-466.

Kleijnen, J.P.C. (1987). Statistical Tools for Simulation Practitioners, Dekker,
New York.

Kleijnen, J.P.C. and Rubinstein, R.Y. (1996). Sensitivity Analysis by the
Score Function Method, European Journal of Operations Research, 88,
413-427.

Knuth, D. (1981). The Art of Computer Programming, Vol. 2: Seminu-
merical Algorithms, Addison Wesley, New York.

Law, A. M. and Kelton, W. D. (1991). Simulation Modeling and Analysis,
McGraw-Hill, New York.

L’Ecuyer, P. (1990). Random numbers for simulation, Communications
ACM, 33, 85-97.

L’Ecuyer, P. (1994). Uniform random number generators, Annals of Oper-
ations Research, 53, 77-120.

L’Ecuyer (1998). Random Number Generators and Empirical Tests, Lecture
Notes in Statistics 127, Springer-Verlag, 1998, 124–138.

35

L’Ecuyer, P. (2001). Software for Uniform Random Number Generation:
Distinguishing the good and the bad, Proceedings of the 2001 Winter
Simulation Conference, IEEE Press, Dec, 95-105.

L’Ecuyer, P. and Granger-Piche, J. (2003). Combined Generators with
Components from Different Families, Mathematics and Computers in
Simulation, 62, 395-404.

L’Ecuyer, P., Simard, R., Chen, E.J. and Kelton, W.D. (2002). An object-
oriented random number package with many long streams and sub-
streams, Operation Research, 50, 1073-1075.

Lehmer, D. H. (1951). Mathematical methods in large-scale computing
units, Proceedings of the Second Symposium on Large Scale Digital
Computing Machinery, 141146, Harvard University Press, Cambridge.

Lewis, P.A., Goodman, A.S. and Miller, J.M. (1969). A pseudo-random
number generator for the system/360, IBM System’s Journal, 8, 136-
143.

Matsumoto, M. and Nishimura, T. (1998). Mersenne twister: A 623-
dimensionally equidistributed uniform pseudo-random number gener-
ator, ACM Transactions on Modelling and Computer Simulation, 8,
3-30.

McCullough, B.D. (1999). Assessing the Reliability of Statistical Software:
Part II, The American Statistician, 53, 149-159.

Müller, P. (1991). A generic approach to posterior integration and Bayesian
sampling, Technical Report 91-09, Statistics Department, Purdue Uni-
versity.

Müller, P. and Ŕıos Insua, D. (1998). Issues in Bayesian Analysis of Neural
Network Models, Neural Computation, 10, 571-592.

Neelamkavil, F. (1987). Computer Simulation and Modelling, Wiley, New
York.

Niederreiter, H. (1992). Random Number Generation and Quasi-Monte
Carlo Methods, SIAM, Philadelphia.

36

Park, S. and Miller, K. (1988). Random number generators: good ones are
hard to find, Communications ACM, 31, 1192-1201.

OR/MS Today (2003).

Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P. (1992).
Numerical recipes in C, Cambridge University Press, Cambridge.

R, official web page. http://www.r-project.org

RAND Co. (1955). A Million Random Digits with 100000 Normal Deviates,
Free Press.

Richardson, S. and Green, P. (1997). On Bayesian analysis of mixtures with
an unknown number of components, Journal of the Royal Statistical
Society, B, 59, 731-792.

Ŕıos Insua, D. and Müller, P. (1998). Feedforward neural networks for non-
parametric regression, in Practical Nonparametric and Semiparametric
Bayesian Statistics (D.Dey, P. Müller and D. Sinha eds.), Springer,
New York.

Ŕıos Insua, D., Ŕıos Insua, S. and Martin, J. (1997). Simulacion, Metodos
y Aplicaciones., RA-MA, Madrid.

Ŕıos Insua, D. and Salewicz, K. (1995). The operation of Kariba Lake:
a Multiobjective decision analysis, Journal of Multicriteria Decision
Analysis, 4, 203-222.

Ripley, B. (1987). Stochastic Simulation, Wiley, New York.

Robbins, H. and Monro, S. (1951). A stochastic approximation method,
Annals of Mathematical Statistics, 22, 400-407.

Ross, S. (1991). A Course in Simulation, MacMillan, New York.

Rubinstein, R. and Mohamed, B. (1998). Modern Simulation and Modeling,
Wiley, New York.

Ruggeri, F. (2005). On the Reliability of Repairable Systems: Methods and
Applications. To appear in Proceedings of ECMI 2004, Springer, New
York.

37

Schmeiser, B. (1990). Simulation Methods, in Stochastic Models (Heyman
and Sobel eds), North Holland, Amsterdam.

Schrage, L. (1979). A more portable FORTRAN random number generator,
ACM Transactions on Mathematical Software, 5, 132-138.

Spiegelhalter, D., Thomas, A., Best, N. and Gilks, W. (1994). BUGS:
Bayesian inference using Gibbs sampling, version 0.30, MRC Biostatis-
tics Unit, Cambridge.

Stephens, M. (2000). Bayesian analysis of mixture models with an unknown
number of components: an alternative to reversible jump methods,
Annals of Statistics, 28, 40-74.

Tanner, M.A. (1996). Tools for Statistical Inference: Methods for the Ex-
ploration of Posterior Distributions and Likelihood Functions, 3nd ed.,
Springer, New York.

Von Neumann, J. (1951). Various techniques in connection with random
digits, NBS Appl. Math. Ser., 12, 36-38.

Whitt, W. (1989). Planning queueing simulations, Management Science,
35, 1341-1366.

38

