Considerations of Modeling in Keyword Bidding (Google:AdWords)

Xiaoming Huo
Georgia Institute of Technology
August 8, 2012

Outline

- I. Problem Description
- II. Game theoretical aspect of the bidding problem that we are considering
- III. Statistical Implementation
- IV. Conclusion

I. Introduction

- We consider the modeling issue in AdWords
- An equilibrium strategy is derived, which we argue will be the foundation of statistical modeling
- What is AdWords: A tool at Google that allow users to bid for advertising positions at google.com

dehumidifier

dehumidifier

Sign in

About 23,400,000 results (0.21 seconds)

Organic search

Ad related to dehumidifier

Why this ad?

<u>Top Rated Dehumidifiers - Ratings, Reviews & Many On Sale.</u>

www.allergybuyersclub.com/ -Great Brands. Free Shipping. Save. 304 seller reviews

Dehumidifiers Steam Cleaners <u>Air Purifiers</u> Hepa Vacuums

Amazon.com: Dehumidifiers

www.amazon.com/b?ie=UTF8&node=267557011
Results 1 - 24 of 584 — Online shopping for **Dehumidifiers** from a great selection of Appliances; & more at everyday low prices.

Dehumidifier - Wikipedia, the free encyclopedia

en.wikipedia.org/wiki/Dehumidifier

A **dehumidifier** is typically a household appliance that reduces the level of humidity in the air, usually for health reasons. Humid air can cause mold and mildew ...

<u>Top Dehumidifier Reviews | Best Dehumidifier - Cons...</u>

www.consumerreports.org > Home > Appliances

Looking for the Best **dehumidifier?** Consumer Reports has honest Ratings and Reviews on **dehumidifiers** from the unbiased experts you can trust.

Dehumidifiers & Energy Star Dehumidifier | Best Buy

www.bestbuy.com > Appliances > Air Purifiers & Dehumidifiers
Shop online for **Dehumidifiers** at BestBuy.com for an Energy
Star **Dehumidifier** and have it shipped or pick up in store!

Dehumidifiers - Walmart

www.walmart.com/cp/Dehumidifiers/112918

AdWords

Ads - Why these ads?

Dehumidifier at Sears®

www.sears.com/Dehumidifiers

3,675 reviews for sears

Save on **Dehumidifiers** at Sea Shop Our Great Selection Toda

Dehumidifiers at Amazon

www.amazon.com/

8,178 seller reviews

Buy dehumidifiers at Amazon! Qualified orders over \$25 ship fi

Top-Rated Dehumidifiers

www.sylvane.com/Dehumidifie 145 reviews for sylvane Compare & Review All Major Bri Fast Free Shipping. 30-Day Ret

Which Dehumidifier to Buy

www.consumersearch.com/deh
We do the research so you don'
have to. Dehumidifier Reviews

Dehumidifiers On Sale

www.compactappliance.com/De 1,637 seller reviews 20% Off ALL Dehumidifiers Sa Get Free Shipping & No Sales 1

Basement Dehumidifier

www.walmart.com/Appliances 985 reviews for walmar hotel raleigh nc

Hotel raleigh NC

Sign in

About 6,230,000 results (0.35 seconds)

Ads related to hotel raleigh nc

Why these ads?

Washington Duke Inn - Located at Duke University

www.washingtondukeinn.com/

3 Night Special from \$119. Book Now

Clarion Hotel® Raleigh NC - Official site

ClarionHotel.com

www.clarionhotel.com/

Hotel near Conventio Center. Best Internet Rates.

Summer Promo - Earn A \$50 Gift Card - Want Hotel Deals? Find Them Here

Sponsored (1)

Book hotels in Raleigh

www.google.com/hotelfinder

2-star hotels from \$42
4-star hotels from \$179

☑ 3-star hotels from \$61 ☐ 5-star hotels

Book hotels

Downtown Raleigh Hotels, Ralei...

320 Hillsborough Street Raleigh

Map for hotel raleigh no

Ads - Why these ads?

HYATT house® Raleigh house.hyatt.com/

All Suites **HoteIs** with a Full Kitchen. Free Breakfast & Intern 122,198 people +1'd or follow Hyatt

Hotels in Raleigh, NC

www.expedia.com/Raleigh_Noi 436 reviews for expedia

Summer Sale: **Hotels** up to 30% Save on **Raleigh**, **NC Hotels**.

295,202 people +1'd or follow Expedia

8/8/2012 5

A Simplified Version of AdWords Bidding

- Sorted (descending) bids b_j , $j=1,2,\cdots,N$, of N potential advertisers: $b_1>b_2>\cdots>b_N$
- Positions and Cost per Click by AdWords
- GSP: generalized second price

Position	Bid price	Actual price (i.e., CPC)
1	b_1	<i>b</i> ₂ +1 cent
2	b_2	b_3 + 1 cent
3	b_3	b_4 + 1 cent
4	b_4	b_5 + 1 cent
5	b_5	Assume out of space

Actual Scheme: Incorporate a Quality Score

- The quality score (aka, AdRank) that depends on relevance, past click through rate, landing page, etc.
- Purpose: integrating web page quality, user experience, user satisfaction
- Prevent: bad, irrelevant ads goes to top positions by paying more (customer satisfaction)

An Example

• Bidding with quality scores (rank according to $b_j q_j$)

Positi on	Bid price	Quaity score	Multiply	Actual price (i.e., CPC)
1	b_1	q_1	b_1q_1	$b_2q_2/q_1 + 1$ cent
2	b_2	q_2	b_2q_2	$J_3 q_3 / q_2 + 1$ cent
3	b_3	q_3	b_3q_3	$b_4 q_4 / q_3 + 1$ cent
4	b_4	q_4	b_4q_4	$o_5 q_5 / q_4 + 1$ cent
5	b_5	q_5	b_5q_5	Assume out of space

- Assume: $b_1q_1 > b_2q_2 > \dots > b_Nq_N$
- Note: the order of advertisers may change from the previous example

Problem Description

Broker & Google AdWords

Review of a Few Terms

Impression

Click

A link showed up

Link is clicked

Xiaomi three bedroom apartments in raleigh no About 804,000 results (0.23 seconds) Ads - Why these ads? Ads related to three bedroom apartments in raleigh no Why these ads? Find Apartments for Rent - Free Local Apartment Looking For a 3 Bdrm Apt? Search. www.forrent.com/3Bedroom www.apartmentguide.com/ Well, This is Your Lucky Day... View floorplans & virtual tours! We Have The Most 3 Bdrms On 1,2 & 3 Bedroom Apts - For rent in the new Sterling 3 Bedroom Apartment For I www.sterlingtowncenterapts.com/ www.rentbits.com/ TownCenter in the heart of Raleigh! Search **Apartment** Rentals Fre Fast. Free. No Login Required. + Show map of Raleigh **Apts** With Paid Utilities Apartment Finder Raleigh - Search Raleigh Apt Deals. www.apartmentlist.com/Raleig www.apartmentfinder.com/Raleigh Cheap Studio, 1,2 & 3 BR View Photos, Virtual Tours, & More! Apartments. Search by Price, City, Zip & Moi 3 Redroom Raleigh Apartments for Rent - Find 3 Red

Conversion

Some one filled in necessary information, so that the broker make \$\$

Review of a Few Terms

Review of a Few Terms

CTR
(Click thru rate)

Click

Conversion rate)

Conversion

Some one filled in necessary information, so that the broker make \$\$

Simple Economics for Broker

- Profit = revenue cost
 - = leads x \$ per lead clicks x CPC
 - = clicks x CR x \$ per lead clicks x CPC
 - = clicks x (CR x \$per lead CPC)
 - = clicks x (RPC CPC)
 - RPC = revenue per click (= CR x \$per lead)
- Objective: maximize Profit
- Control variable: maxCPC (maximum amount willing to pay for CPC)
- Assume no budget cap (simplification)

Other Queries Not Covered in This Talk

- Which keyword?
- When to bid?
- How to write the ad?
- How to take advantage of user's profile?
- How to group keyword?

Maximize Profit

- Large maxCPC (higher bid)
 - Higher position (always)
 - More clicks (assumed)
 - Higher CPC (always)
- An example
 - Same keyword
 - Same web site
 - RPC = 9 (assumed fixed)
- Optimal maxCPC \in [5,7)

	Position	Current bids	Clicks	Profit
	1	\$10	100	(9-9)100=0
	2	\$9	90	(9-7)90=180
	3	\$7	70	(9-5)70=280
	4	\$5	50	(9-3)50= 300
)	5	\$3	30	(9-2)30=210

16

Relates to ICC (incremental CPC)

Outline

- I. Problem Description
- II. Game theoretical aspect of the bidding problem that we will consider
- III. Statistical Implementation
- IV. Conclusion

II. Gaming Aspect in AdWords

- Advertisers (bidders): 1, · · · , N
- Slots in AdWords: $1, \dots, K, K < N$
- i-th bidder, with RPC (aka expected return) v^i
- Descending current bids: $b_1 > b_2 > \dots > b_K$
 - $-b_i$ = bid amount by bidder at position (slot) i
- Clicks for the ith bidder: WLOG,

$$c_1^i \ge c_2^i \ge \dots \ge c_K^i$$

See justification next page.

Continue with Games

• Utility of bidder i: if bidder i bids b_k (i.e., he/she is the kth highest bid), then his/her utility (i.e., profit) is

$$(v^i - b_{k+1})c_k^i$$

- Bidders want to maximize utilities
- Justification of non-increasing $c_k{}^i$
 - $\text{ If } \exists \alpha, c_{\alpha}{}^{i} < c_{\alpha+1}{}^{i},$
 - then $(v^i b_{\alpha+1})c_{\alpha}^i < (v^i b_{\alpha+2})c_{\alpha+1}^i$.
 - Having $c_{\alpha}{}^{i} = c_{\alpha+1}{}^{i}$ preserves the above inequality, won't change the outcome of the maximization problem.

Illustration: utility versus maxCPC

Piecewise constant utility/click function

Bid amount (i.e., maxCPC) by the ith advertiser

Recap of the Game

- Every bidder knows
 - current bids: $b_1 > b_2 > \cdots > b_K$
 - clicks for all: $c_1^i \ge c_2^i \ge \cdots \ge c_K^i$
- Every bidder choose maxCPC (given v^i), so that she can achieves k^* that maximizes utility $(v^i-b_{k+1})c_k{}^i$ as a function of k
- Q: does *equilibrium* achievable?

Nash Equilibriums

Notations

- $-\mathbf{b}=(b^1,b^2,...,b^N);$ note the difference betwn b^i and b_i
- $b^{-i} = (b^1, ..., b^{i-1}, b^{i+1}, ..., b^N)$; exclude b^i
- **Best response** of bidder *i*:
 - $-M^{i}(\mathbf{b}^{-i}) = \text{given } \mathbf{b}^{-i}$, the set of values of b^{i} such that the utility of bidder i is maximized
- Nash equilibrium: a strategy profile b such that $\forall i, b^i \in M^i(b^{-i})$.

Property of Equilibriums

- Does it exist?
 - Yes. Can give examples...
- Is it reasonable?
 - Need to define reasonableness

Vulnerability of Nash Equilibriums

- $O^{i}(\boldsymbol{b})$ bidder i's position in the descending bid queue
- Output truthful (OT) property of a position auction:
 - \forall equilibrium set \boldsymbol{e} , and $\forall i, O^i(\boldsymbol{e}) = O^i(v^1, \dots, v^N)$, the auction is output truthful
- Counterexample in Bu, Deng, and Qi (2008)

Designing Objective of a Bidding Strategy

- A strategy that is available to all bidders
- Those who follow maximize their utilities
- Those who don't will not negatively affect others
- Violators don't maximize their utilities
- Equilibrium exists and unique

"Forward Looking" Strategy

- The higher bidder i bids, the higher a slot she can get in the next step
- Bid as high as possible in the set $M^i(\boldsymbol{b}^{-i})$ -- best response
- Control the risks of decreasing their own payoffs by the affected bidders' next optimal moves (kind of technical)

A Derived "Forward Looking" Strategy

• [Bu et al, 2008] for bidder i, given b^{-i} , suppose k is the optimal position that maximizes her utility, this bidder's next bid is

$$F^{i}(\mathbf{b}^{-i}) = \begin{cases} v^{i} - \frac{c_{k}}{c_{k-1}} (v^{i} - b_{k+1}), & 2 \le k \le K, \\ v^{i}, & k = 1 \text{ or } k > K. \end{cases}$$

• Here c_k and c_{k-1} are the clicks of the bidder who occupies slot k-1

Forward Looking Equilibrium

- A forward looking response function based equilibrium is a strategy profile \boldsymbol{b} such that $\forall i, 1 \leq i \leq N, b^i = F^i(\boldsymbol{b}^{-i})$
- That is, every bidder follows the forward looking scheme
- The equilibriums exist
- The position auction is output truthful under the forward looking best response scheme; i.e., the corresponding equilibrium is always output truthful

Proof of the "output truthfulness"

- Using contradiction, if OT does not hold, (in an equilibrium,) there must exist a pair of adjacent slots k, k+1 and the bidder i on slot k and the bidder j on slot k+1 such that $v^j > v^i$
- Let u_k^i denote the utility of bidder i at slot k, and u_{k+1}^i the utility at slot k+1, the inequalities on the next page establishes a contradiction: bidder would prefer slot k+1

Inequality of the OTness

•
$$u_k^i = (v^i - b_{k+1})c_k$$

$$= \left(v^i - \left(v^j - \frac{c_{k+1}}{c_k}(v^j - b_{k+2})\right)\right)c_k$$

$$= \left(v^i - b_{k+2}\right)c_{k+1} + (c_k - c_{k+1})(v^i - v^j)$$

$$< (v^i - b_{k+2})c_{k+1}$$

$$= u_{k+1}^i$$

The above contradicts to the equilibrium

Uniqueness of FL Equilibrium

- The position auction has a unique forward looking Nash equilibrium
- Sketch of the proof:
 - Output Truthfulness
 - The Forward Looking best response formula

Convergence of Forward Looking Strategy

- Does it converge? Yes, hopefully...
- If at every time, one bidder bids, and this bidder is randomly chosen, then the forward looking strategy will eventually converge to its equilibrium.

More on Forward Looking Equilibrium

- FL schemes maximizes bidders who follow it;
- Follower won't be punished by actions from those non-followers;
- non-followers will not maximize their utilities.

Outline

- I. Problem Description
- II. Game theoretical aspect of the bidding problem that we will consider
- III. Statistical Implementation
- IV. Conclusion

III. Implementation Issues

- Recall the forward looking strategy
 - Find the best response slot k, then do the following

$$F^{i}(\mathbf{b}^{-i}) = \begin{cases} v^{i} - \frac{c_{k}}{c_{k-1}} (v^{i} - b_{k+1}), & 2 \le k \le K, \\ v^{i}, & k = 1 \text{ or } k > K. \end{cases}$$

- Need to know:
 - $-\ c_k$ and c_{k-1} are the clicks of the bidder j who occupies slot k-1
 - $-b_{k+1}$, the immediate lower bid; This is the current CPC!
- Possible solution: use AdWords traffic estimator

AdWords: Traffic Estimator

 Given a key word, Traffic Estimator tells how it could perform

Use Adwords Traffic Estimator for Inference

- Estimating c_k and c_{k-1} :
 - ATE gives average positions and a range of clicks
 - Need statistical model to estimate c_k 's
- Getting b_{k+1} :
 - Current CPC paid by this bidder
 - Time varying
- Big question: can we really trust ATE to perform the above tasks? (do not know...)
- If there is a statistically consistent way to estimate c_k , forward looking converge to equilibrium with high probability

Other Considerations

- We assumed known RPC; however in reality, the conversion rate (CR) is highly stochastic
- One may infer c_k through knowledge of the bidders (their web sites are observable) and its own experience; for example, similar web sites likely have similar c_k 's
- In fact, many online testimonies say that you can learn by trying AdWords – see @ youtube

IV. Conclusion

- We study the keyword bidding problem at AdWords
- A strategy named "forward looking best response" is a promising way to bid:
 - It can be made available publicly
 - Maximize utility
 - Immune to adversary bids
- There remain some statistical estimation problems unsolved
- Haven't been tested in reality
- Stochasticity can be another issue

8/8/2012 40