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PROBLEM 1: UNCERTAINTY ENABLED DESIGN OF AN ACTIVE MEMS VALVE
FOR A HIGH-PRESSURE MICRO-GAS-ANALYZER

Bruce Bugbee1, Brianna Cash2, Jun Liu3, Helen Parks4, Wei Qi5, Deling Wei6, Xi Zhang7

Faculty Mentor: Prof. Ralph Smith, North Carolina State University

Problem Presenter:
Dr. Jordan Massad

Sandia National Laboratories

Abstract

The ability to rapidly and accurately analyze an air sample to detect trace amounts of a toxin in ambient
air is a critical need for portable gas analyzers. The combination of gas chromatography and microsystems,
a Micro-Gas-Analyzer (MGA), offers a viable integrated technological solution. MGAs can increase sample
separation capacity and speed, maintain high sensitivity, provide rapid response time, and allow for minia-
turized systems that require no consumables and low power consumption. Sandia is developing an active
micro-electromechanical-systems (MEMS) flow control valve that further enables an MGA to achieve low leak
rates and high flow rates, to sustain record-breaking high operating pressures, and to require low control
voltages. The active valves operate under a nonlinear electrostatic force that causes them to close when the
given a control voltage against a lower pressure, hold closed against high pressures needed for rapid sample
loading, and re-open for gas chromatograph loading. The material properties and structural design of the valve
ultimately determine how it closes and opens. The valve is designed to operate optimally under prescribed
conditions. However, due to practical limitations in batch fabrication, there is variation and uncertainty in
critical design parameters for any given valve. Hence, a realizeable valve may not perform well or at all,
thus disabling the MGA. Determination of a valve design whose operation and performance is less sensitive
to variation and uncertainty is sought. This project aims to understand how the combination of a control
voltage and key design parameters determine the valve dynamics, flow rate, leak rate and other measures of
valve performance. In our work, we develop a single degree of freedom model of the valve boss dynamics
that successfully captures the most significant behavior of the valve boss and outputs an impact velocity of
the boss upon closing. Transient data from laser Doppler velocimetry on fabricated valves was provided by
Sandia National Laboratories for model calibration and validation. We study steady states of our dynamic
model and their stability to gain insight. We quantify flow rate and leak rate of the valve using mathematical
models and optimize these rates with respect to key design parameters. We also construct a Bayesian model
for quantifying uncertainty within the dynamic model and the design parameters. We are able to quantify the
variation in the impact velocity and the flow rate with respect to design parameters, and we provide a rough
estimate of uncertainty from our statistical study.

1 Introduction and Background

1.1 Motivation

The ability to rapidly and accurately analyze an air sample to detect trace amounts of a toxin in ambient air
is a critical. A Micro-Gas-Analyzer (MGA) is a portable, low-power device for rapidly detecting chemical and
biological agents in the surrounding air. Ideally, the MGA would operate with high sensitivity (ppm to ppb)
and high selectivity (<0.01% false positive) with an analysis time around 4s [1]. Sandia National Laboratories

1Colorado Sate University
2University of Maryland
3Southern Illinois University
4University of California, San Diego
5University of California, Berkeley
6Pennsylvania Sate University
7Utah State University
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Figure 1: Top view of the valve design.

is developing an MGA [1] in which sample air is passed over a pre-concentrator (PC), which gathers species
of possible interest, then directed through a gas chromatograph (GC) column, where species are separated,
and finally sent to a detector for species identification. This process is modulated by a series of active and
passive valves along the sample flow path. The passive valves are actuated by pressure impulses. The active
valves are actuated electrostatically, allowing path selection within the MGA and providing pressure impulses
to activate the passive valves [1].

Short analysis times require swift gas chromatographic separation which necessitates rapid sample injection.
Decreasing the volume of the sample injector is one way to decrease sample injection time, and minimization
of injector volume motivates the development of microfabricated valves [1]. In this project, we focus on the
active valves used in sample injection.

1.2 Valve Design and Operation

Figures (1) and (2) show two different views of the active valve design. The valve consists of a boss (lid)
suspended by four bifold springs above a base with an annular electrode. The valve base has a center hole,
called the Bosch hole, and a seal ring surrounding the Bosch hole. The boss has four flow exit holes to facilitate
air flow when open, a tooth ring that fits into the seal ring on the base when closed, and an outer stop ring
which prevents the boss from touching the electrode when the valve is closed. Four up-stop tabs around the
boss prevent the boss from opening too far upward.

In the absence of pressure and voltage, the springs suspend the valve at an equilibrium point between the
valve base and the unstop tabs. We quantify this position as gu below the up-stop tabs with ges between the
boss and the electrode. When a voltage is applied, an electrostatic force acts on the boss in the area above
the electrode, bringing the boss down to close. While the valve is closed, sample air is trapped by the seal
ring and pressure builds. This air exerts a pressure force on the boss, and the holding pressure of the valve is
the maximum value of this pressure under which the valve remains closed. After sample loading, the voltage
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Figure 2: Cross-sectional view of the valve design with design parameters labeled. The Bosch Hole here is the
same as the Valve Orifice in Figure (1).

Specifications: Values: Unit:
Min flow rate 1.00e-07 m3/s
Min hold off pressure 690 kPa
Max leak rate 1.00e-09 m3/s

Table 1: Design Specifications

is turned off, and the valve opens. In the open position, air flows in through the Bosch hole, through the gap
gf in the open seal ring, and out through the flow exit holes.

1.3 Valve Performance

For optimal MGA performance, we desire active valves with a high flow rate when open, a low leak rate when
closed, high holding pressure, and low operating voltage. Table 1 lists the valve specification required by the
system [1]. We also desire a low impact velocity upon valve closure to minimize bouncing, thereby minimizing
wear on the valve and increasing operational lifespan.

In this project, we construct a mathematical model of the valve’s opening and closing dynamics as well as
steady state models to calculate flow rate, leak rate, and holding pressure. We validate our models against
data provided by Sandia National Laboratories, then use them to examine the sensitivity of valve performance
to a range of design parameters.

2 Model Development

2.1 Dynamic Model Equation

The MEMS active valve can be modeled as a forced mass-spring-damper system in Figure 3, where the boss
is the mass with the four springs suspending it creating an effective spring force. The system is forced by the
introduction of a electrode which creates a electrostatic force (Fes) which is used to close the valve as well as
a force due to the pressure in the system (Fp) which when the electrostatic force is absent opens the valve.
The system can represented by a second-order differential equation,{

x(0) = x0, ẋ(0) = v0

mẍ+ cẋ+ keffx = −Fes + Fp
(2.1)
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Parameters: Nominal Values: Unit:
ges 1.82 µm
gu 2 µm
gt 0.5 µm
mboss 4.3e-9 kg
ε 8.84e-12 F/m
Aes 9.35e-7 m2

RBosch 30e-6 m
keff 112.4 N/m

Table 2: Design parameters.

F

Fk c

m pressure

electrostatic

eff

eff

Forced Mass-Spring-Damper System

Figure 3: Rigid body diagram of valve boss with effective mass
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where m is the effective mass of the boss, c is a viscous damping coefficient, and keff is the effective spring
constant for the four springs.

If we consider 2.1 as a first-order system in displacement x and velocity v we can write{
ẋ = v;

v̇ = 1
m (−cv − keffx− Fes + Fp)

(2.2)

Negative velocity denotes motion towards the substrate. The electrostatic force is determined by treating
the boss electrode system as a capacitor which is found to be

Fes =
εAesV (t)2

2(ges + x)2
(2.3)

where Aes is the area of the electrode, V is the applied voltage, ges is the distance between the equilibrium of
the unforced system and the electrode, and ε is the permitivity of air. The force due to pressure is given by

Fp = PAb (2.4)

where Ab is the area of the Bosch opening. The pressure is assumed to be stepwise constant function where
P = Pclose (applied pressure when boss is closed) when opening and P = Popen when closing (applied pressure
when open). The voltage is assumed to be a step function with a 0.5 µs rise time.

Starting from the open position when a sufficiently large voltage is applied, the boss will drop down to hit
seal seat at some time t1 with velocity vimpact. To simulate the loss of kinetic energy and bouncing due to the
collision we reduce and reverse the vimpact by a coefficient of restitution (COF) α, which represents the ratio
of the relative speed after collision to the relative speed before collision [3]. For all simulations we assume that
α = .5. Bouncing will continue until it displaces less than a tolerance of 1e−8m. When in the closed position,
if the voltage is turned off and Pclose is applied we simulate the boss hitting the upstop using the same COR.
Figure 4 is an example of the dynamics of the boss.

2.2 Equilibrium solutions and their stability

In order to optimize those critical design parameters (such as boss-to-seat gap, boss-to-electrode gap, etc.), we
need to understand how the boss behaves as time limits to infinity. In other words, we seek the equilibrium
solutions of our model equation. More importantly, one must analyze their stability properties to characterize
those that can be realized in practical physical circumstances. An equilibrium is called asymptotically stable
provided every solution that starts out near the equilibrium converges to it. An equilibrium is called stable
provided every solution that starts out nearby stays nearby. For zero voltage, the stationary equation of (2.2)
is given by v = 0, where

x = PAb/keff (2.5)

For nonzero voltage, {
0 = v;

0 = 1
m

(
− εAesV

2

2
1

(ges+x)2
− kspx+ PAb − cv

)
.

(2.6)

2.3 Stability criterion

To solve the nonlinear equation (2.6), we let z = ges + x and plug it back into (2.6) to get

εAesV
2

2

1

z2
+ keffz − keffges − PAb = 0, (2.7)

which can be rewritten as a cubic equation (neglect zero solution)

f(z) ≡ z3 +

(
−PAb
keff

− ges
)
z2 +

εAesV
2

2keff
= 0. (2.8)

5



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

x 10
−5

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
x 10

−6

Time (s)

D
is
p
la
ce
m
en

t
(m

)

Dynamics of Boss

 

 

g
t

g
es

g
upstop

model

hit g
tClosing of Boss

(100 Volts) Opening of Boss
(P = 100 psi)

Figure 4: Example of the dynamics of the boss for parameters that results in bouncing both during closing
and during opening.

For such a cubic polynomial f(z), we have the analytic formulas for all three cubic roots. In particular, its
discriminant, which is given by

∆1 =

[
4

(
PAb
keff

+ ges

)3

− 27

(
εAesV

2

2keff

)]
εAesV

2

2keff
, (2.9)

determines the following three possible cases:

• ∆1 > 0: f(z) = 0 has three distinct real roots.

• ∆1 = 0: f(z) = 0 has a multiple root and all its roots are real.

• ∆1 < 0: f(z) = 0 has one real root and two non-real complex conjugate roots.

However, only real roots zr = ges + xr are physically meaningful. To study the stability of these equilibrium
solutions xr = zr − ges, we need to check the eigenvalues of the corresponding Jacobian matrix

J(xr) =
1

m

[
0 m

εAesV
2

(ges+xr)3
− keff −c

]
. (2.10)

Let

ρ = 4m

(
Aes V

2 ε

(ges + xr)
3 − keff

)
, ∆2 = c2 + ρ. (2.11)

Then the explicit formulas for the two eigenvalues of J(xr) are

λ1 = −c+
√
c2 + ρ

2m
, λ2 = −c−

√
c2 + ρ

2m
.

Based on this, we have the following possible stability conclusion (always assume c > 0):
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• If ρ > 0, then λ1 < 0 and λ2 > 0, the equilibrium is unstable.

• If ρ < 0, then the equilibrium is asymptotically stable since

– If ∆2 = 0, then λ1 = λ2 = −c/(2m) < 0;

– If ∆2 < 0, then Re(λ1) = Re(λ2) = −c/(2m) < 0;

– If ∆2 > 0, then λ1 < 0 and λ2 < 0.

Given a group of given design parameters, constant voltage V and constant pressure P , verifying the stability
of each equilibrium xr requires solving the roots of f(z) and checking the sign of stability indicator ρ.

Applying above conclusion, we could correctly figure out all the equilibria and their stability properties
for each of the solutions. However, only stable equilibria are the only steady state solutions that one directly
obverses in physical system. Thus, we will only demonstrate those stable equilibria. Table 2 gives the current
design parameters for our simulations.

In Figure 5 we plot the locations of stable equilibrium as a function of voltage V (with varying pressures),
which shows the pull-in effect, i.e., the voltage when the boss will eventually snap down to the seal ring seat.
We call this voltage the pull-in voltage. In Figure 6 we plot the locations of stable equilibrium as a function of
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Figure 5: Equilibrium positions of boss as a function of voltage V.

pressure P (with varying voltages), which shows the pop-up effect, i.e., pressure when the boss will eventually
open up. We call this pressure the opening pressure. Next, we proceed to determine both pull-in voltage
Vpi and opening pressure Pop by manipulating the steady state equation. Both of them are crucial to the
performance of the valve.

2.3.1 Pull-in Voltage and Opening Pressure

Based on the steady state equation

εAesV
2

2

1

(ges + x)2
+ kspx− PAb = 0, (2.12)
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Figure 6: Equilibrium positions of boss as a function of pressure P .

or its equivalent form (assuming x > −ges)

εAesV
2

2
+ (ges + x)2(keffx− PAb) = 0, (2.13)

we can consider V is a function of x. Intuitively the pull-in voltage happens at the location where dV
dx = 0.

Taking the derivative of the last equation (2.13) with respect to x to setting dV
dx = 0,

2(ges + x)(keffx− PAb) + (ges + x)2keff = 0, (2.14)

which gives the equilibrium solution (ignoring the solution x = −ges)

xpi =
2PAb
3keff

− ges
3
. (2.15)

The pull-in voltage (as a function of P ) is found by solving 2.13 and plugging in the equilibrium solution

Vpi(P ) =

√
8

27

(PAb + geskeff )3

εAesk2eff
. (2.16)

Similarly, we consider P is a function of x and set dP
dx = 0 to find the opening pressure. Taking the derivative

of steady state equation (2.12) with respect to x gives

−εAesV 2

(ges + x)3
+ ksp −

dP

dx
ABosch = 0, (2.17)

from which we could solve for the equilibrium displacement it opens up to (setting dP
dx = 0)

xop = 3

√
εAesV 2

ksp
− ges. (2.18)
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The corresponding opening pressure (as a function of V ) is given by solving 2.13 and plugging in

Pop(V ) =
3 3

√
k2spεAesV

2 − 2kspges

2ABosch
. (2.19)

In summary, we obtained how the pull-in voltage Vpi determined by the pressure P and how the opening
pressure Pop is affected by the voltage V . Their dependence relations are depicted in Figure 7. It shows the
following interesting facts:

• Under a lower pressure (5 psi), a low voltage (16 V) is enough to pull-in the boss down to be closed.

• To achieve higher opening pressure (50 psi), a high voltage (140 V) is necessary to hold the boss closed.
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Figure 7: Pull-in voltage Vpi(P ) and opening pressure Pop(V ).

2.3.2 Design consideration for parameters

Minimizing the impact velocity and leak rate are two of the design considerations, which require us to carefully
choose gaps (gt, ges, gu) and working voltage such that:

1. The gt gap is larger than the pull-in displacement xpi to avoid large impact velocity.

2. The up-stop tab is above the opening displacement xop to avoid large impact velocity. According to the
expression of xop, set V = 0 to eliminate the possibility of suddenly pop-up (unzipping) since xop = −ges
will not happen.

3. The voltage is sufficiently large in order to hold the valve closed when the pressure becomes large and
decrease the leak rate.

2.4 Flow rate model

We consider the situation when the valve is opened. Steady state xs is the neutral displacement of the boss,
and it can be derived from

xskef = PopenAboss , Aboss =
R2 + r2

2
. (2.20)

By (2.20), xs can be expressed as a function of Popen, Aboss and kef , i.e.

xs =
PopenAboss

kef
, if xs < gu , (2.21)
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where R is outer radius of seal ring, r is the inner radius of seal ring, Aboss is the effective area, Popen (gage
pressure) is the pressure drop across the valve boss when it is opened, and kef is the stiffness of the spring.

If the boss hit the top (i.e. xs ≥ gu), we need to consider the deformation of the boss, say y, y can be
expressed as

y =
PopenAboss
kef + kboss

, (2.22)

here kboss is the stiffness of the boss. The additional opening y is controlled by the boss stiffness kboss and the
area over which the pressure difference acts (Aboss).

The flow rate (Q) through the annular flow area is a piecewise function

Q =


π(gflow + xs)

3Popen
6µ ln(R

r )
, xs < gu

π(gflow + gu + y)3Popen

6µ ln(Rr )
, xs ≥ gu .

(2.23)

where ges is the gap between boss and electrode, gu is the gap between boss and upstop, gflow is the gap
between teeth and bottom, µ is the absolute viscosity.

Exmaple 1: Pressure Versus Flow
Consider the case xs = gu, flow rate becomes

Q =
π(gflow + gu + y)3Popen

6µ ln(Rr )
, (2.24)

by (2.22), Q can be written as

Q =

π
(
gflow + gu +

PopenAboss
kef + kboss

)3
Popen

6µ ln(Rr )
(2.25)

2.5 Leak rate upper bound

For our leak rate model, we assume the valve closes completely with perfect alignment. For this case, the
gap between boss and base is approximately the surface roughness of polysilicon and molecular flow models
apply. If, due to slight errors in manufacturing, the valve closes imperfectly, the gap between boss and base
exceeds surface roughness, pressure driven flow models apply and leak rates are higher than predicted here
[5]. In [2] Galambos et. al. state that experiments indicate a cup/key valve closure reduces the leak rate more
than an equivalent path increase in a flat valve closure. Hence, we calculate an upper bound to our valve’s
leak rate using the leak rate equation for molecular flow through a flat tube of equivalent path length and
cross-sectional area. We approximate the cross-sectional area as rav × b, where rav = (R + r)/2 and b is the
surface roughness of polysilicon. We use a value of b = 5nm from [5]. We calculate the path length through
the cup/key seal as l = R − r + 2(ges − gf )nteeth, where ges and gf are as defined above and nteeth is the
number of teeth hanging from the boss. As defined, ges − gf gives the vertical thickness of the teeth hanging
from the boss. See figure (9) for clarification.

The flat valve leak rate model, from [5] and [4], is

Qleak = C

(
1− Pint

P

)
(2.26)

where C is the conductance of the tube, Pint is the internal pressure of the MGA, P is the applied pressure
and Qleak is given in L/s. We can rewrite this using the gage pressure Pg = P − Pint as

Qleak = C
Pg
P

. (2.27)

10



0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

0.5

1

1.5

2

2.5
x 10

−7

Gage Pressure − N/m
2

Q
 (

fl
o
w

 r
a
te

 −
 m

3
/s

)

 

 

Eqn 0.5

valve 1

valve 2

valve 3

valve 4

valve 5

Figure 8: Comparison of measured (five values) and calculated (1.6) flow rates for preferred MB configuration.
Parameters used in (1.6) are R = 50µm , r = 47.5µm ,µ = 1.8× 10−5Ns/m2 , kboss + kef = 2500N/m , gflow +
gu = 2.5µm .

Figure 9: Close up of seal ring structure. Leak path length l is labeled in orange, radii r and R are labeled in
red, and tooth width ges − gf is labeled in green.

11



From Sandia, we have that Pg is between 13.79 kPa and 34.474 kPa (2 and 5 psi). The conductance C is given
by [4]

C =
3.44× 104

2
√
π

(
T

M

)1/2
2πravα

2

l
K . (2.28)

The parameters are T = absolute temperature, M = molecular weight of the gas leaking out, and K an
empirical correction factor [4]. This conductance equation uses the approximation 2πrav >> α⇒ 2πrav+α ≈
2πrav. From [5], we conclude

CH2
=

3.44× 104

2
√
π

(
T

MH2

)1/2

= 117 (2.29)

and
K = 1.444 . (2.30)

From [4], we have

Cair =
3.44× 104

2
√
π

(
T

Mair

)1/2

= 30.9 . (2.31)

These constants make our overall leak rate models for hydrogen and air

QleakH2
= 117

2πravα
2

l

Pg
P

(2.32)

and

Qleakair
= 30.9

2πravα
2

l

Pg
P

. (2.33)

For current design parameters in Table 1 r = 47µm, R = 50µm, ges = 1.8µm, gf = 0.5µm, nteeth = 1, and
P = 690kPa, these models predict leak rates

QleakH2
= 6.8× 10−11 L/s = 6.8× 10−14 m3/s (2.34)

and
Qleakair = 1.8× 10−11 L/s = 6.8× 10−14 m3/s (2.35)

These rates are orders of magnitude lower than the specified maximum leak rate of 10−9 m3/s. Therefore,
under the assumption that cup/key configuration has a lower leak rate than a flat valve seat of equivalent
path length, it is not necessary to consider further geometric dependence in the leak rate model.

We could possibly refine the model to include gap dependence on applied electrostatic force, i.e. a stronger
electrostatic force would pull the boss even closer to the base. This dependence would further decrease the
leak rate. Because our model is already out performing the specifications, we do not consider this refinement
at this time.

3 Model validation/Calibration

3.1 Boss data description and cleaning process

The data that was considered for analysis in this project consisted of time series data measuring the vertical
displacement of the boss as it moves from a fully open state to fully closed. These time series take place over
voltages of 50, 75, and 100 volts and pressures of 2 and 50 psi. The measurements taken under 50 psi exhibit
extremely erratic behavior leading our group to believe that they never reached a fully closed state. This is
to be expected since 50 psi is considered to be a very high pressure value and most likely was being used
to test the upper limits of pressure tolerance of the closing motion. For this reason only data sets measures
at 2 psi level are being considered in this analysis as shown in Figure ??. The raw data actually proved to
be quite messy even after adjusting them to start from the same level as in Figure ??. It seems that each
set of measurements included varying levels of values taken before the closing event started which is indicate
by taking a closer look of the data shown in Figure ??. Also it appears that the starting point for each set
of measurements varies. The final data set that was used in the analysis was cleaned to remove anything
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Fit data: Values: Unit:
ges 1.50 µm
Aes 1.00e-06 m2

c 0.0728 Ns/m
mass 4.59e-09 kg

Table 3: Fit data.

that occurred before a user-chosen start point and shifted onto the same time scale. In the statistical model
described later all measurements were shifted to have the same landing position and varying start positions.

In order to see the displacement travel, we select a reference point (mostly the very bottom one) for each
data set, make it as the landing level, and plot all the displacement data in one Figure 10. Figure ?? shows
how the velocity impacts the valve displacement.

3.2 Validation

For validation of the model we plotted our results against the test data for 2psi at three voltages (50V , 75V ,
and 100V ) with design parameters assumed used for the valve testing found in Table 2. Using a damping
coefficients of the same magnitude found in [3] we found similar behavior and closing time to the data sets.
Figure 11 is a plot of the dynamics of the closing of the boss and opening of the boss for the design parameters.

3.3 Calibration

Once we were confident that we were capturing the dynamics of the system we then took into account that
there is a level of uncertainty in many of the design parameters (due to fabrication) and the estimated damping
coefficient. We fit our model to the 2psi and 50V data using a non-linear least squares fit to the following
parameters ges, Aes, mboss and c.

Our resulting parameters found by the fit in Table 3 were all within 10% of the given design parameters
which is the expected for fabrication variation (%∆ ges ∼ 0.1, %∆ Aes ∼ 7, %∆ mboss ∼ 7). With our new
parameters we then could see how well our model predicted the other data sets for input voltage 75V and
100V in Figure 12. From the figure 12 one can see that the data that we are trying to predict has some
oscillations not seen in the dynamic model, this is suspected to be interference in the testing of the valve.
For completeness we plotted the resulting velocity for the fit parameters versus the velocity data from which
the displacement data shown in Figure 13. As one can see the velocity data is noisy and there are significant
variations closer to the closing time which may account for some of the differences in behavior between the
dynamic model and data.

4 Design Studies

4.1 Introduction to the optimization problem

We now focus on improving the current design of the MGA Valve by developing optimization problems. We
first investigate how perturbations of the design parameters affect the air flow rate when the valve is open,
as shown in Fig. 14. It can be seen that the flow rate is the most sensitive to the variation of the outer
radius of the seal ring R and the inner radius r. Specifically, the flow rate increases rapidly when the overlap
of the valve seat R − r (the thickness of the seal ring) decreases. This is also clearly seen in equation (1.5).
Comparatively, the flow rate is less sensitive to the variation in the width of the vertical gaps (ges,gflow and gu).
Similar conclusions can also be drawn with regard to the sensitivity of leak rate, as depicted in Fig. 15. These
observations motivate us to focus on optimizing the dimensions of R and r without affecting the footprint of
the device, which we will elaborate in the following subsections.

The optimal design of the valve should also account for the impact velocity of the boss when it lands on
the seat and rises to hit the upstop, which reduces the lifespan of the device. By using the equation (5.4),
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we calculate the upper bound of the impact velocity and test its sensitivity with respect to the dimension
parameters, as shown in Fig. 16. It is shown that a larger gap between the upper tooth and the valve seat is
able to significantly reduce the impact velocity. However, the favorable dimensions of the vertical gaps have
to be restricted by other practical considerations, which are also discussed later in this section. To find an
optimal design we consider the following objective functions:

Objective functions

• Flow rate (Q) (1.4):
maximize: Q . (4.1)

• 2). Leak rate (L):

minimize: L = C
(

1− Pout
Pin

)
= C

Pcri
Pin

(4.2)

where
Pcri = Pin − Pout ,

Pin is the inside (upstream) pressure, Pout is the downstream pressure, Pcri is the desired holding pressure
(maximum possible applied pressure). C is the conductance

C =
2πCairK Γav b

2

R+ r + 2
(
ges − gflow

)
n
,

where Cair is the slot formula constant for air, K is the fudge factor, Γav = (R + r)/2 is the average
radius over seal ring, b is the surface roughness for polysilicon, and n is number of teeth.

Other objective functions considered:

• Minimizing impact velocity (may depend on steady state)

• Minimizing closing voltage (may depend on steady state)

• Minimizing footprint (R , r ,Res , R̃)

• Avoiding circuit shorting (ges , gflow)

The objective functions are constrained by some of the following design constraints:
Constraints

• Holdoff pressure (PH)

Minimum holdoff pressure Pcri = 690 kPa.

Given a voltage V , there is a holdoff pressure (PH) that satisfies

1

2
εAes

V 2(
ges − gflow

)2 − kefgflow = PHAboss ,

PH ≥ Pcri = 690kPa ,

(4.3)

here Aes = π(R2
es− r2es), Res is the outer radius of the electrode, res is the inner radius of the electrode.

• Leak rate (L)

Maximum desired leak rate is 10−9m3/s.

L = C
Pcri
Pin

=
πCairK (R+ r) b2

R− r + 2
(
ges − gflow

)
n
· Pcri
Pin
≤ 10−9 .
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• Flow rate (Q)

Minimum desired flow rate is 10−7m3/s.

• Voltage

Minimum voltage require to drug the boss back from the neutral position. The electrostatic force plus
spring force should be greater than the pressure force, i.e. (assuming the boss hit the top)

1

2
εAes

V 2

(ges + gu)2
+ kefgu ≥ PopenAboss . (4.4)

• Others constraints

res −R ≥ 13µm (to allow space for exit holes and insulation for electrode) ,

R− r ≥ 3µm (to allow space for teeth) ,

Res > res ,

ges > gflow , etc.

4.1.1 Flow rate optimization

Case 1: optimizing over radius R and r

max: Q(R, r) =


π(gflow + xs)

3Popen
6µ ln(R

r )
, xs < gu

π(gflow + gu + y)3Popen

6µ ln(Rr )
, xs ≥ gu .

(4.1)

with constraints
1

2
ε
Aes
Aboss

V 2(
ges − gflow

)2 − kefgflow
Aboss

= PH ≥ Pcri = 690KPa , (4.2)

L = C
Pcri
Pin

=
πCairK (R+ r) b2

R− r + 2
(
ges − gflow

)
n

Pcri
Pin
≤ 10−9m3/s . (4.3)

1

2
εAes

V 2(
ges + gu

)2 + kefgu ≥ PopenAboss , (4.4)

constraint (3.4) means that the electric force and spring force are big enough to close the valve against pressure.
We also need to consider some simple constraints:

Res −R ≥ 63× 10−6m, (4.5)

R− r ≥ 2.6× 10−6m, (4.6)

The last constraint is for saving space for teeth and seal ring, one can change the difference 2.6µm based on
his need.

When we solve this the optimization problem over R and r, the parameters are found in Table 4

ges = 1.8µm , gu = 2µm , gflow = 0.5µm ,Res = 280µm (4.7)

The numerical optimal solution is:

Ropt = 55.225µm , ropt = 52.625µm , Qopt = 1.3072× 10−7m3/s , (4.8)
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Fixed Parameters: Values: Unit:
keff 112 N/m
kboss 2500 N/m
Pcri 6.9 e -5 Pa
Pin 7.91e-5 Pa
Cair 30.9e-3
K 1.44
Popen 3 psi
b 5e-7 m
ε 8.84e-12 F/m
V 100 V
mboss 4.59e-09 kg

Table 4: Fixed parameters used in optimization of flow rate and leak rate.

Where Ropt is the optimal outer radius of seal ring, ropt is the inner radius of seal ring, Qopt is the flow rate
at
(
Ropt , ropt

)
. The flow rate for current MB design is

QMB = 6.3188× 10−8 ,

current radius for the seal ring are RMB = 50µm , rMB = 47µm .
Remark: By increasing the radius around 10% we can increase the flow rate by 100%. In fact, when

radius R and r are close to each other, ln
(
R
r

)
is close to zero. A very little decrease (10%) in R would greatly

change the valve 1

ln
(

R
r

) , which in turn affects the flow rate Q (100%).

Sensitivity analysis of Case 1

• Constraint Analysis

– Flow rate Q versus minimum holdoff pressure Pcri
We want to see how flow rate changes with respect to the constraint minimum holdoff pressure Pcri
(fig. 6). The sensitivity analysis is going to give us some sense how to improve the current design.
As before we fixed the other parameters in (3.7).

The graph is very flat when Pcri is larger than 690kPa. We can increase minimum holdoff pressure
Pcri without decreasing the flow rate significantly.

– Flow rate Q versus maximum leak rate Lmax
The optimal flow rate Qopt is irrelevant to minimum leak rate (fig. 7). This is because that given
the current design gaps (ges , gflow , gu), constraint (3.6) is stronger than the constraint (3.3), i.e.
(ges−gflow)× number of teeth is large enough to control the leak rate based on our leak rate model.

• Parameters analysis

– Flow rate Q versus outer radius of seal ring R

The flow rate is a decreasing function in R, the black vertical line represents the constraint (3.6).
In order to maximize the flow rate, R have to hit the constraint.

– Flow rate Q versus inner radius of seal ring r

Flow rate function Q is an increasing function in r, the black vertical line is the minimum difference
constraints (3.6) as before. In order to minimize the flow rate, optimal inner radius r must hit the
constraint (fig. 20), i.e constraint (??) is binding.

– Flow rate Q versus outer radius of electrode Res
The optimal radius Ropt and ropt depends on parameter Res, so it is an function of Res through
Ropt and ropt. In general, Qopt is an increasing function of Res (fig. 10).
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– Flow rate Q versus voltage

Similarly, flow rate Q is an increasing function in applied voltage (fig. 11)
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Figure 22: flow rate Q versus Res

Case 2: optimizing over gaps ( ges , gflow , gu )
The objective function is same as (3.1), and we also use the same constraints (3.2)-(3.4). For this case, we

fixed parameter R and r(current design), i.e.

R = 50µm , r = 47µm ,

instead, we need some constraints for gap ges , gflow and gu. Since gflow and gu both contributed for flow rate,
the question is that how to allocate the distance between them. Impact velocity is the velocity of the boss
when it hits the bottom or top. In practice, we want to restrict (or minimize) the impact velocity to avoid
the deformation of the boss. The fixed parameter values are found in Table 4.

Aboss = π
2 (R2 + r2) , Aes = π(R2

es − r2es) , Res = 280µm , res = 63µm ,Pclosed = 1
2Pcri . (4.9)

When we start to turn on the voltage (assuming boss remains at the top position), the energy of the system
is

E1 = −1

2
εAes

V 2

ges + gu
+

1

2
kefg

2
u . (4.10)

When it first hit the bottom seat, the energy becomes

E2 = −1

2
εAes

V 2

ges − gflow
+

1

2
kefg

2
flow +

1

2
mv2 , (4.11)

The first term in (3.11) is electric potential energy, the second term is the elastic potential energy, the last
term is kinetic energy. The work done by the pressure is

W1 = PopenAboss
(
gflow + gu

)
, (4.12)

and the work done by the air resistance force is denoted by W2 which is hard to estimate. By the conservation
of energy, we have

E1 −W1 −W2 = E2 ,

by (3.10)-(3.12), it yields

−1

2
εAes

V 2

ges + gu
+

1

2
kefg

2
u − PopenAboss

(
gflow + gu

)
−W2

= −1

2
εAes

V 2

ges − gflow
+

1

2
kefg

2
flow +

1

2
mv2 .

(4.13)
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The kinetic energy can be expressed as

1
2mv

2 =
1

2
εAes

V 2

ges − gflow
− 1

2
εAes

V 2

ges + gu
+

1

2
kef
(
g2u − g2flow

)
− PopenAboss

(
gflow + gu

)
−W2 ,

(4.14)

Assume W2 = 0 and the left hand side of (3.14) can not exceed 1
2mv

2
max, we obtain the following constraint

1

2
εAes

V 2

ges − gflow
− 1

2
εAes

V 2

ges + gu
+

1

2
kef
(
g2u − g2flow

)
− PopenAboss

(
gflow + gu

)
≤ 1

2
mv2max . (4.15)

By estimating the velocity for current design and adjust vmax, we can find a very nice optimal solution for
ges , gflow and gu.

So far, we only consider the impact velocity at the bottom. If we consider the impact velocity at the top,
we obtain another constraint as follows

1

2
kef
(
g2flow − g2u

)
+ PclosedAboss

(
gu + gflow

)
≤ 1

2
mv2max . (4.16)

After adding the two constraints into our optimization problem, the optimal solution becomes

goptes = 3.0404µm , goptflow = 1.8376µm , goptu = 1.366µm , Qopt = 3.3758× 10−7 , (4.17)

where vmax = 2m/s .
Sensitivity analysis of Case 2
Constraint analysis

• Optimal flow rate Qopt versus maximum impact velocity vmax

vmax as an important factor in the constraints (3.16) and (3.17) affects the Qopt positively (fig. 12)
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Figure 23: flow rate Q versus vmax

• Optimal flow rate Qopt versus minimum holdoff pressure

As in case 1, Qopt would increase as minimum holdoff pressure increases (fig. 13)

Remark: our optimal solution is not binding to the other constraints, so the optimal flow rate is
insensitive to them.
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Figure 24: flow rate Q versus vmax

Parameter analysis

• Optimal flow rate Qopt versus opening pressure(working pressure) Popen

Optimal flow rate Qopt is an increasing function of Popen (fig. 14). Popen appears both in the objective
function and closing condition and impact velocity constraints. Obviously, opening pressure Popen is
proportional to flow rate. It also provides an resistance force when the valve is going to be closed, while
it help to decrease the impact velocity. Based on our numerical experiments, in general, it affects the
optimal flow rate positively.
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Figure 25: flow rate Q versus Popen

• Gap ges versus flow rate Q

The flow rate formula (1.4) has nothing to do with the gap ges, either do the steady state xs and
additional opening y.
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• Gap gflow versus flow rate Q

Figure 15 shows us how flow rate Q increases in gflow.
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Figure 26: flow rate Q versus gflow

• Flow rate Q versus gap gu

In the beginning (fig. 16), flow rate is an increasing function of gu. At some point x, the flow rate jumps
down to some level, x can be expressed as

x =
PopenAboss

kef
, (4.18)

which is the steady state. Jump is large when kboss is far greater than kef . From the design point of

1 1.5 2 2.5 3 3.5

x 10
−6

3.5

4

4.5

5

5.5

6

6.5

x 10
−8

Gap Between the Boss and the Top Stop (m)

F
lo

w
 R

a
te

, 
Q

 (
m

3
/s

)

Figure 27: flow rate Q versus gu

view, one should enlarge gu to some point around the steady state in order to have a better flow rate.
The jump size is irrelevant to gu, in fact

jump =
PopenAboss

kef
− PopenAboss
kef + kboss

. (4.19)
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4.1.2 Leak rate optimization

Case 1: Optimizing over radius R and r

min: L(R, r) =
πCairK (R+ r) b2

R− r + 2
(
ges − gflow

)
n
· Pcri
Pin

(4.1)

with constraint

Q(R, r) =


π(gflow + xs)

3Popen
6µ ln(R

r )
, xs < gu

π(gflow + gu + y)3Popen

6µ ln(Rr )
, xs ≥ gu .

Q(R, r) ≥ Qmin = 5× 10−8 , (4.2)
1

2
εAes

(
V 2(

ges − gflow
)2)− kefgflow = PHAboss ,

PH ≥ Pcri = 690kPa ,

(4.3)

1

2
εAes

V 2(
ges + gu + y

)2 + kefgu ≥ PopenAboss , (4.4)

Res −R ≥ 63× 10−6m, (4.5)

R− r ≥ 2.6× 10−6m. (4.6)

In this model, we consider flow rate as a constraint (4.2). It means that the flow rate Q need to be greater than
the value 6× 10−8 which is around to the flow rate of the current design. The maximum leak rate constraint
has been removed because we are minimizing the leak rate in this case.

As before the fixed values are found in Table 4

ges = 1.8µm , gu = 2µm , gflow = 0.5µm ,Res = 280µm (4.7)

The numerical optimal solution are

Ropt = 61.74µm , ropt = 52.29µm , Lopt = 2.893× 10−13m3/s , (4.8)

Where Ropt is the optimal outer radius of seal ring, ropt is the inner radius of seal ring, Lopt is the leak rate
at
(
Ropt , ropt

)
. The leak rate for current MB design is

LMB = 5.295× 10−13 ,

current radius for the seal ring are RMB = 50µm , rMB = 47µm
Remark: current design is very close to our optimal solution (Ropt, ropt), we don’t need to change current

design if we only want to minimize leak rate. In fact, by (fig 14), we can see from the picture that the effective
region (domain for R , r which satisfies the constraints (4.2)-(4.6)) is so small, so we will not be able to decrease
the leak rate significantly. Intuitively, flow rate Q is an increasing function of R, while leak rate is a decreasing
function in R. The objective function L contradicts the minimum flow rate constraint on Q which make the
optimum solution stay around the current design.

Sensitivity analysis of Case 1
Constraint analysis

• Minimum flow rate constraint Qmin

The optimal solution is not sensitive to the minimum flow rate constraint Qmin (4.2) when we decrease
Qmin, because the constraint is not binding at the optimal. However, if we increase the Qmin there will
be no solution to the optimization problem because of the contradiction between minimum flow rate
requirement and minimizing leak rate.
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Figure 28: Leak rate L versus R, r

Similarly analysis can be found for the other constraints.
Parameter analysis

• Outer radius of seal ring R versus flow rate (L)

Leak rate function L is an decreasing function in R (fig. 17), when we fixed the inner radius r = 47µm.
As discussed before, by increasing the radius R to decrease the leak rate is not allowed due to the
minimum flow rate requirement.
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Figure 29: leak rate L versus outer radius R

• Inner radius of seal ring r versus leak rate (L)

Leak rate function L is an increasing function in r. Again, because of the minimum flow rate constraint,
one can not decrease the leak rate by decreasing the inner radius r.

Case 2: optimizing over gap ges , gflow , gu
Based on current design data, we fixed R = 50µm and r = 47µm and other parameters as before, we will

obtain the optimal solution as follows

goptes = 1.897µm , gflow = 0.4356µm , gu = 2µm Lopt = 5.006× 10−13 . (4.9)

Sensitivity analysis of Case 2
Leak rate L changes as the gap ges and gflow change (fig. 19, 20). Same as case 1, we can not change the

current design significantly because strong constraint conditions. Leak rate L is not affected by the gap gu.
In conclusion, for customers who want to minimize the leak rate, after enforcing the minimum flow rate

constraint Qmin around current design flow rate, there is no need to improve current design.
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4.1.3 Impact velocity optimization

It is easy to find a numerical solution (velocity) to the dynamic model, while the analytical solution does not
exist because of the nonlinear electrostatic force term. The energy conservation formula (3.14) gives us a way
to estimate the upper bound of the impact velocity, which is

1

2
mu2 ≤ 1

2
εAes

V 2

ges − gflow
− 1

2
εAes

V 2

ges + gu
+

1

2
kef
(
g2u − g2flow

)
− PopenAboss

(
gflow + gu

)
, (4.1)

Let vsup be the upper bound of the impact velocity defined as follows

1

2
mv2sup =

1

2
εAes

V 2

ges − gflow
− 1

2
εAes

V 2

ges + gu
+

1

2
kef
(
g2u − g2flow

)
− PopenAboss

(
gflow + gu

)
, (4.2)

We are going to use v2sup as the objective function, the optimization problem becomes

minimize: v2sup , (4.3)

here

v2sup =
2

m

(1

2
εAes

V 2

ges − gflow
− 1

2
εAes

V 2

ges + gu
+

1

2
kef
(
g2u − g2flow

)
− PopenAboss

(
gflow + gu

))
, (4.4)

with the constraints (4.2)-(4.6) and leak rate constraint (3.3).
Remark: by solving the optimization problem (5.3), we reach the goal that minimizing the real impact

velocity. Figure 15 is a simple sensitivity analysis for this impact velocity upper bound (5.4), which is similar
to the sensitivity analysis for the real impact velocity. This gives us a evidence that the upper bound of impact
velocity vsup does reflect the behavior of the real impact velocity.
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Figure 33: flow rate Q versus gu

Case 1: Optimizing over radius R and r
Using the same fixed parameter values as before, the numerical optimal solution is

Ropt = 61.74µm , ropt = 52.29µm , voptmax = 1.524m/s . (4.5)
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voptmax is close to the upper bound for the current design vmax = 1.565m/s, while R and r both change a lot,
which means the optimal solution is not sensitive to R and r.

Case 2: Optimizing over gap ges , gflow , gu
The numerical optimal solution is

goptes = 2.617µm , goptflow = 1.1674µm , gu = 0.5µm , voptmax = 1.3013m/s . (4.6)

For the current design, the upper bound of impact velocity is vmax = 1.565m/s.
The upper bound impact velocity is decreasing function of ges but increasing function in gflow and gu (fig

20). In general, we should choose a large gu , small ges, and small gflow.
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Figure 34: flow rate Q versus ges , gflow , gu

4.1.4 Multi-objective optimization

We could consider a objective function which is a combination of flow rate Q and leak rate L and impact
velocity vmax, for example

maximize: k1Q− k2L+ k3v
2
max , (4.1)

k1 , k2 , k3 are weights for the three functions. The flow rate model is a special case of the multi-objective
problem (6.1) (k1 = 1 , k2 = k3 = 0), same for leak rate and impact velocity model.

4.1.5 Sensitivity of Impact Velocity to Parameter Shifts

We measured the models sensitivity of the impact velocity (velocity at which the boss hits the substrate) to
variations in the design parameters and inputs (Volts, Pressure). In figure X one can see that the ges had
the greatest effect on the impact velocity which is expected since the Fes ∝ 1

g2es
. In figure X we see that as

expected the voltage has a much greater effect on the impact velocity as Fes ∝ V 2.

4.2 Optimization Recommendations to Sandia

We have discussed three models based on three different objective functions. The real design depends on
Sandia’s demand. The following table are optimal solutions for different models based on the Sandia’s need.

Table 5: optimal solution over R and r
objective function flow rate leak rate impact velocity

current design 6.32× 10−8m3/s 5.295× 10−13m3/s 1.5650 m/s
flow rate 1.307× 10−7m3/s 6.3402× 10−13m3/s 1.5435 m/s

impact velocity 5.0006× 10−8m3/s 2.893× 10−13m3/s 1.5238 m/s
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For flow rate optimization, the optimal solution is R = 55.225µm and r = 52.625µm. For impact velocity
optimization, the optimal solution is R = 61.74µm and r = 52.29µm. For the current design R = 50µm , r =
47µm , ges = 1.8µm , gflow = 0.5µm , and gu = 2µm. Impact velocity is not significant with respect to radius.

Table 6: optimal solution over gap ges , gflow and gu
objective function flow rate leak rate impact velocity

current design 6.32× 10−8m3/s 5.295× 10−13m3/s 1.5650 m/s
flow rate 3.376× 10−7m3/s 5.4863× 10−13m3/s 1.6614 m/s

impact velocity 4.9998× 10−8m3/s 5.0267× 10−13m3/s 1.3013 m/s

For flow rate optimization, the optimal solution is ges = 3.04µm , gflow = 1.8376µm, and gu = 1.366µm).
For impact velocity optimization the optimal solution is ges = 2.617µm , gflow = 1.1674µm, and gu = 0.5µm).

Based on current design parameters, if flow rate is the first consideration, one should enlarge both the outer
radius and inner radius by around 10% and increases gaps between the boss and electrode and gap between
the boss and the seat while decreases gap between the boss and upstop. If impact velocity is much important
than flow rate and leak rate, one should enlarge the flow gap and make the upstop gap and gap between boss
and electrode small.

5 Statistical Analysis

The usage of data-driven methods to study not only the estimation of parameters but also the effect of pa-
rameter variation in complex systems has become popular in recent years. Previously, traditional parametric
statistical methods were not of much use for systems that were modeled by sets of complicated differential
equations. Often times these equations were highly nonlinear and could only be solved via numerical approx-
imation. This lack of an agreeable structure to the solution was a big problem. However recent advances in
nonparameteric, Bayesian, and computational methods have made analyzing these systems relatively doable.
This section will detail the application of a delayed rejection adaptive Metropolis (DRAM) method to estimat-
ing the parameters for mass (m), electrostatic area (Aes), dampening (c), and Bosch radius (RBosch) found in
the numerical solution to the dynamical model described previously.

5.1 Statistical Model

For all i = 1, . . . N , consider the statistical model

xi = f(ti, Vi, Pi|θ) + εi, εi
iid∼ N(0, σ2) (5.1)

Here xi is the ith positional measurement associated with time ti and voltage Vi and fit with parameters
θ = (θ1, θ2, . . . , θM ). N is the overall sample size of the data. The function f(t, V, P |θ) is the solution to the
dynamical model described in Equation 2.2. A complication arrises here since the solution to this model, like
many ODE systems, does not have a closed form and only exists via numerical approximations. Due to the
lack of a closed form, we pursued a computational Bayesian approach.

The Bayesian model consists of placing a physically appropriate prior on θ (which is the same as placing prior
on each θj in θ since we assume prior independence) and using a multivariate Gaussian likelihood. Explicitly
the model is

θ ∼ [Θ]

X|θ ∼ N
(
f (t,V|θ) , σ2IN×N

)
(5.2)

where X, t and V represent the vectors of all responses, times, and voltages and f (t,V|θ) is a vector evaluated
element-wise. The goal is to estimate the posterior distribution of the parameters (Θ|X).
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The lack of an explicit closed form makes the usage of parameter partitioning methods like Gibbs sampling
impossible. The traditional Metropolis-Hastings (MH) algorithm is capable of handling this problem via
Markov Chain Monte Carlo estimation but suffers from many well known short comings when it comes to
multidimensional parameter spaces. For an overview of MCMC methods and the MH algorithm see [6]. Chief
among them is a lack of adequate exploration of the parameter space (mixing). To overcome this we chose to
implement a version of a delayed rejection adaptive Metropolis (DRAM) algorithm.

5.2 Statistical Parameters Versus Model Parameters

Special care is required to alleviate potential confusion between the idea of statistical parameters and model
parameters. The model parameters describe all the variables found in the dynamic model. A large of amount
of uncertainty in this problem lies in the fact that we don’t have adequate values for these variables for the
specific valve that the data describes. Some of this is due to the inability to measure the variable due to the
extremely small nature of the valve. Also there are values that could be measured or estimated via physical
properties well but were not included or available. The statistical parameters are a subset of these parameters
that we wish to estimate from the data while fixing the remaining model parameters to the values that we
have for this valve. The statistical parameters for this model are mass (m), electrostatic area (Aes), damping
coefficient (c), electrostatic gap (ges), and unstop gap (gu). In the notation of the model from above this
means θ = (m,Aes, c, ges, gu).

5.3 Delayed Rejection Adaptive Metropolis

The DRAM algorithm that is used in this analysis is taken from the MATLAB implementation provided on
Marko Laine’s website [7]. This algorithm is a modified version of the standard MH algorithm via the addition
of delayed rejection (DR) and adaptive Metropolis (AM) properties. The basic idea of a DR algorithm is that
upon rejection of a proposed parameter value via standard MH, chain progression is frozen and a second and
possibly more stage of parameter proposal is entered. This allows to local adaptation of proposal distributions
to increase acceptance rates of proposed parameters. AM algorithms allow for global adaptation of the proposal
distribution, notably the covariance matrix, based on information gained from the entire chain run up to the
current iteration. This method has strong implications since destroys the Markovian and reversible nature of
parameter chain. However, it has been shown that given appropriate conditions on how the algorithm adapts
globally that this chain will still converge to the stationary distribution that describes the posterior parameter
distribution [9]. The paper by [8] describes the DRAM method in great detail with [10] and [9] providing
foundations for the DR and AM methods individually.

The only prior information we have about the distribution of the parameters found in θ is in the from
reasonable physical bounds arising from the physical meaning of these parameters (m > 0, etc.). Operating on
the assumption of prior independence, we specify the marginal priors as being uniform over their prescribed
intervals. The bounds for gu were calculated directly from the data and are the observed minimum and
maximum starting positions across the 5 datasets. Table 7 contains these bounds as well as the initial values
for each parameter. These initial values reflect likely values that were supported by our model validation as
well as outside information. As with its’ bounds, the initial value of gu is calculated directly from the data
and set to the mean of all the observed starting positions.

Parameter Initial Guess Bounds
m 4.3e-9 kg [0, 10e-6]
Aes 9.35e-7 m2 [0, 10e-6]
c 0.08 Ns/m [0, 1]
ges 2.5e-6 m [0, 3e-6]
gu 2.4907e-6 m [2.229e-6, 2.7563e-6]

Table 7: Initial values and prior bounds for DRAM algorithm
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5.3.1 Fixed versus Varying σ2

The functionally of the mcmcrun code from [7] allows the user the option to keep the variance parameter
of the noise term, σ2, fixed or allow it to vary along with the other parameters. If it is specified as fixed, an
estimator based off of the residuals from fitting model under the initial parameter values is used for σ̂2. This
method would only be appropriate in cases where you feel that your initial parameter selection are very close
to the estimates either via inspection or previous knowledge. This is seldom the case however. The alternative
is to have the σ2 a diffuse conjugate Gamma prior and consider it as part of your parameter space. Due to
confusion as to the function default, the fixed case was initially considered and a disproportionate amount
of time was spent on those results. Once the mistake was realized the DRAM analysis was reran using a
variable σ2. The theoretically correct approach is the variable σ2 method so that will be the focus of the
results presented here.

5.4 Results

A 5000 iteration run of the DRAM algorithm with variable σ2 was performed using all 5 available 2 psi
datasets (denoted 50V, 75V, 100V-1, 100V-2, and 100V-3). A burn in of 500 was used on all estimates. Figure
36 shows a plot of the accepted value chains for each parameter. The striking feature of this plot is just how
poor the DRAM algorithm performs at traversing the parameter space, which is the exact opposite of what
is known for. Delayed rejection, adaptive Metropolis, and their ilk are known for their abilities to increase
the mixing properties of these parameter chains. The acceptance rate of this run is 2.3%, much too low for
any statements regarding the distribution or variational properties of the parameters to be statistically valid.
It is possible that a longer run would remedy this situation. A 20000 iteration DRAM run was done over an
subset of the data (50V, 100V-1, and 100V-2) and still exhibited this poor mixing behavior. Ideally a much
longer run encompassing the full dataset would be done to definitively answer this question but due to time
constraints of the program and time constraints on virtual sessions from the NCSU Virtual Computing Lab
where this is being run this is not feasible at this time. If this approach also fails to alleviate the problem,
we would have to reevaluate the dynamic model. There could possibly be some identifiability issues with the
statistical parameters or an unaccounted force term acting on the system.

While the mixing problems exhibited here makes any distributional statements about the parameters invalid,
the algorithm itself does still provide point estimates of the parameters that provide a very good fit to the
data. This is a property that arrises in traditional MH algorithms that exhibit mixing problems as well. This
case here is one of the few where it is appropriate to report a post estimate without a measure of variability
since we have already decided that any variability measure would be invalid. Figure 37 shows the model fit
versus the data for each voltage level. The point estimates are available in Table 8

Parameter Estimate
m 3.5806e-9 kg
Aes 1.0135e-6 m2

c 0.1055 Ns/m
ges 5.2483e-7 m
gu 2.6285e-6 m

σ2 1.2723e-014 m2

Table 8: Parameter estimates of MB valve over 5000 iterations of DRAM

6 Conclusions and General Recommendations

6.1 Conclusions and Accomplishments

Our group took a multidisciplinary approach to investigating the nature of MEMS valves with regards to
uncertainty and variation of design parameters. A brief list of our accomplishments during this workshop is:
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• We identified relevant design parameters and quantified valve performance metrics.

• We constructed a single degree of freedom model that describes the dynamic behavior of the boss under
opening and closing actions.

• Design optimization was performed using quantified metrics such as flow rate, leak rate, and impact
velocity.

• Parameter sensitivity analyses were performed with regards to flow rate, leak rate, and impact velocity.

• A statistical model was developed in an effort to quantify distributional properties of parameters in order
to gain greater insight.

6.2 Recommendations

A brief list of our recommendations for SANDIA is:

• Minimizing variation in electrostatic gap will reduce significant variation in valve performance

• If impact velocity is of paramount importance a low closing voltage system with a high holding voltage
is preferred.

• If leak rate is the driving factor, a high voltage system will provide better performance.

• Relaxing the hold off pressure requirement while simultaneously increasing voltage, working pressure, or
boss radius will most effectively increase flow rate.

• Improved data collection methodology and control would help create a richer dataset from which inference
could be made for quantifying uncertainty.

•

Our work is best viewed as a comprehensive first step in understand the complex system that governs
MEMS valves. Future work can uses these findings as a starting point to hopefully provide conclusions that
lead to better MEMS valve designs. We would like to thank all the staff at SAMSI, NCSU, and Sandia that
made our work on this project possible.

A Table of parameters
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Parameters: Description: Unit:
Rb Radius of Bosch hole µm
res Inner radius of electrode µm
Res Outer radius of electrode µm
Aes Area of electrode m2

ges Gap between boss and electrode for new design µm
gupstop Gap between boss and upstop µm
gflow Gap between bottom of boss teeth and substrate µm
gtravel Gap between boss teeth and bottom µm
tboss Thickness of boss µm
Dboss Diameter of boss µm
mboss Mass of boss (estimate) kg
keff Effective stiffness of all four springs N/m
kboss Effective stiffness of boss N/m
lspring Length of spring µm
wspring Width of spring µm
tspring Thickness of spring µm
µ Density of polysilicon kg/m3

E Elastic modulus of polysilicon GPa
tteeth Thickness of teeth µm
wteeth Width of teeth µm
R Outer radius of seal ring µm
r Inner radius of seal ring µm
b surface roughness of polysilicon µnm
x displacement of equilibrium µm
y center displacement of boss beyond upstop gap µm
kboss flexural stiffness of boss µm
V Voltage volts
ε dielectric constant of air F/m
c damping Ns/m

Table 9: Parameters.
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Abstract

A solution to the path planning problem for a network of autonomous robots operating under multiple
constraints is presented, where the robots operate in an environment in which the knowledge of the
terrain is obtained through aerial imagery. The motivating problem here is one where teams of
unmanned robots compete against each other in navigating around obstacles, visiting a series of
pick-up and drop-off points. Robot teams get awarded points for visiting the pick-up and drop-off
points and get penalized for time spent in the arena. Thus, the goal here is to execute the task as
quickly as possible, while accumulating as many points as possible. In addition, both the layout of
the environment and the values of the pick-up and drop-off points can vary with time.

A complete solution requires two main components – image processing and itinerary calculation.
The image processing part consists of deducing the structure of the arena from the aerial imagery,
at the end of which the master ground robot has global information regarding the positions of the
obstacles and points to visit. Using this, the ground robot computes a visibility graph that provides
a set of feasible navigation trajectories which avoids obstacles. The second component calculates
optimal itineraries for the ground robot(s) in the team, based on the path costs calculated from
the visibility graph such that our constraints are satisfied while optimizing for accumulated points.
Three approaches are presented for calculating the itinerary: a Brute-Force algorithm, a Greedy
Algorithm, and one approach based on Linear Programming.

Simulation results are provided in terms of the actual path taken, computational time, and optimality
of the solutions. The various algorithmic issues encountered and potential avenues for future work
are also discussed.

1 Introduction

Navigation of unknown areas by unmanned autonomous robots is challenging, particularly for search-
and-rescue missions where they might be deployed to rapidly navigate through a dynamic and haz-
ardous terrain. In a real life search-and-rescue environment, a ground-based vehicle can be used for
maneuvering through narrow passageways with the assistance of one or more air platforms; these
air platforms can communicate with the ground vehicle by mapping out a path to the missing or
injured person. The overhead vehicle is able to take images of the area, and the ground vehicle must

1Indian Statistical Institute, Calcutta
2Florida Institute of Technology
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be able to utilize the information to successfully navigate to the person in need. The previous sce-
nario highlights the importance of the robot motion planning and justifies why its study has become
incredibly broad and theoretically deep at the same time.

Path planning and navigation for mobile robots, in particular in the case where the environment is
known, is a well-studied problem; see, for example, the book by Latombe [12] and the references
therein. There are a number of existing maze-searching and robot motion planning algorithms,
many of which only focus on successfully navigating the arena but not on performing additional
specialized tasks. Controlling mobile robots in uncertain environments is of central importance to
many military applications as described in [18]. Also, the automated robots were used successfully as
the first responders in the World Trade Center disaster [14]. A detailed description and application
of automated robots for space exploration and research and also their efficient use can potentially
reduce cost and risk to humans [8]. Operating automated robots within uncertain environments has
proved to be challenging; this encouraged the development of a new research field of computational
intelligence [19]. Clark et al. [3] used two approaches, “environmental mapping evolution algorithm”
and “stochastic learning automation approach.” Both methods explored the maze for path planning
and ensuring complete coverage. Kazerouni et al. [9] proposed methods which improved the solution
time; their main concern was the dead ends in the maze. Ersson et al. [7] considered arcs instead of
straight line paths or block-to-block traversing; they also explored the idea of re-planning the paths
based on updated information of the maze and the cost constraints. Their method was shown to be
suboptimal, but they did consider non-uniform obstacles. Mishra et al. [13] used Djikstra’s algorithm
and the Flood Fill algorithm for path planning; a drawback in their methods was the consideration
of only “Manhattan” type paths.

Herein we explore the issue of determining optimal path planning according to a cost matrix that can
be time dependent. In our proposed setup we allow the incorporation of multiple ground and aerial
automated vehicles which are working in unison to perform certain prescribed tasks. The proposed
setup allows the incorporation of features like the dynamical change of the arena layout by random
movement of obstacles.

Our report is arranged as follows. First we give a detailed description of the problem at hand.
Then we describe each of the methods used in planning the optimal path according to prescribed
constraints. Methods considered are Brute-Force algorithm, Greedy Algorithm, and Linear Program-
ming. We provide simulation results that support the effectiveness of the proposed methods. Finally,
we conclude our report by discussing some future directions that our work might follow.

2 Problem Description

In our setup we want to see how fast robot vehicles can traverse a certain course keeping in mind
that there are obstacles, rules, and points to acquire. More than one ground vehicle may enter the
arena, but only one is required to navigate from the entrance to the exit and back. Scoring will be
based on both the minimum distance traveled and the time to reach the goal.

The arena is 80-feet by 80-feet and is divided into (hypothetical) square grids of 4-feet by 4-feet with
a wall height of 4 feet and a 20-foot high available air space. The 400 square grid has various obstacles
that should be avoided by the ground vehicle; obstacles must be driven around. The obstacles in the
field can be of any polygon shape and might be dynamic, e.g. a wall might open up or close at any
given time. An example of an arena is described in Figure 1.
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Figure 1: Example of the Arena. Walls are marked with grey squares. Yellow squares mark the
drop-off points, purple squares mark the pick-up points, red squares mark the hazard points, green
and cyan squares mark the entrance and exit, respectively.
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A team can have several unmanned vehicles, air vehicles (UAV) and ground vehicles (UGV). The
assumption is that two UAVs and two UGVs are used. The primary UAV is the Eye in the Sky (UAV-
EITS) which has a fish eye lens with a 180-degree view and the secondary one is the Surveillance
(UAV-Surv) which has a more focused camera with a 40-degree angle view. The primary UGV is
the UGV-Prime which is a more powerful processor than the other vehicles and will maintain overall
air and ground traffic control. UGV-Prime has the ability to turn on its axis and make sharp turns
but it isn’t as fast as the UGV-1 which is the other UGV. The UGV-1 is a smaller vehicle that is
much faster but cannot make sharp turns as it does not rotate on its axis. The challenge requires
that the UGVs traverse a path to several Pick-Up Points (PUP) and Drop-Off Points (DOP), which
are designated in Figure 1 by purple and yellow squares respectively. In order to gain points the
UGV must always visit a purple square prior to visiting a yellow one. At the purple square it should
stay for 30 seconds before it can move again. Once a UGV reaches the Exit, it needs to return to
the Entrance to consider the course complete. The PUP and DOP have a unique scoring system
that might dynamically decrease with time and once passed through they become just another path
point. Other blocks that need to be identified are red squares, which are considered as hazards. The
vehicles may cross these red squares to reduce travel time, but they will have a large negative effect
on the scoring. The air vehicle(s) are expected to take multiple snapshots of the maze that can be
used to find the optimal path and to search for obstacles and hazards.

Our strategy for navigating successfully the arena is as follows. First, we are considering having the
UAV-EITS move to the center of the field to take an initial picture of the whole obstacle which will
be sent to the main computer. Then the image will be processed to trace the optimal path. The
UAV-EITS will remain at the center of the field taking pictures of the course periodically to make
sure that no changes have been made and that the path is still accessible. The UAV-SURV would
initially take pictures at four different corners of the field, as to avoid any angles distortion taken by
the UAV-EITS. After the initial pictures, the UAV-SURV will follow the UGVs at a closer range, 8
feet to 10 feet, making sure it detects better images than the UAV-EITS. It is suggested that the
UAV-SURV flies from the start position to the first corner so that it computes the exact position of
the start point.

3 Implementation

As mentioned before, one or more autonomous UAVs periodically photograph the terrain such that
both an Eye in the Sky view and detailed terrain information is available to the UGVs. The initial
parts of the image processing consists of removing noise and distortion from the aerial imagery and
converting the 3-D aerial imagery to a flattened 2-D representation. The 2-D image is then used
to deduce the locations of the obstacles, the pick-up and drop-of points and the locations of exits,
and hazards, if any. The entire processing of converting a real-world 3-D image to a maze-like 2-D
representation in and of itself is an algorithmically challenging task, which largely lay outside the
scope of this project. Due to this and project time constraints, we restricted our task to begin at
the stage where we already have the 2-D arena map. To simulate this process, we generated our own
test mazes, which we describe below.
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Figure 2: Example of a Maze (left) and a modified Arena (right)

3.1 Arena Simulation

Sample maps of the arena were generated by using standard maze generation algorithms such as
Depth-First Search [10], Randomized Kruskal [11], and Randomized Prim’s algorithms [17], and
then modifying the result by removing some interior walls and filling some dead ends until the result
more resembles a top view of a city rather than a traditional maze [1]. The walls and pathways
are 4-feet wide, which was discretized into 4-foot by 4-foot squares, with every individual square
representing a wall or a path area.

3.2 Image Processing

Dead-End Removal Even with some random dead-end filling, the arena still contains dead end
paths that do not contain pick-up or drop-off points. For the purpose of planning a path, these dead
ends contribute nothing, and in fact, add corners that affect the visibility graph (described below).
To reduce running time of finding the shortest path, we use an image smoothing operation which
fills these dead end paths. Figure 3 shows the difference between the original maze and the modified
arena with fewer valid paths.

3.3 Corner Detection

Before the task of path planning can be executed, a representation of the environment in terms of
accessible and non-accessible areas has to be created. For a ground vehicle, this is a 2-D plane where
obstacle regions are represented as closed polygons that are completely contained inside a larger
boundary. The vertices of the polygons represent the corners of the obstacles. Then all regions
that lie entirely outside the polygons are available for ground locomotion, and for navigating around
obstacles, the robot follows the straight line path that connects two corners that are mutually visible
from each other. We describe this Visbility Graph in greater detail in Section 3.4; here, we describe
the process of detecting corners from an image on which the pose estimation and flattening has
already been applied.
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Figure 3: A Comparison Between Former Map with the Smoothed Map

Student Version of MATLAB

Figure 4: Corners of the Environment Delineate the Boundary of the Obstacles
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The input to the corner detection algorithm is a binary matrix, where a 1 entry in the i, j-th position
indicates that the corresponding spatial location in the flattened image is occupied by an obstacle,
and a 0 entry implies free space. We use MATLAB’s bwlabel function to group and label connected
objects. Below we show an example of this procedure, starting out with binary matrix A which
contains two obstacles (denoted by 1s).

A =

1 1 0 1

1 1 0 1

0 0 1 1

0 0 1 1

>> bwlabel(A,4)

ans =

1 1 0 2

1 1 0 2

0 0 2 2

0 0 2 2

The output of bwlabel is a matrix where entries belonging to the same object are given the same
label. For a given object, corner detection then reduces to traversing the edges of an object and
detecting where the transitions occur. The output of the corner detection algorithm is a list of
polygonal vertices (Figure 4), which can then be used to construct the visibility graph

3.4 Visibility Graph

In computational geometry, a visibility graph [6] is a graph constructed from a set of locations and
obstacles in a plane (or higher dimensional space) such that the set of vertices in the graph are the
vertices of the obstacles and an edge exists between any two mutually visible locations.

More formally, if G = (V,E) is an undirected graph, then for any vi, vj ∈ V, eij ∈ E if and only if
the line joining vi and vj does not pass through an obstacle. Intuitively, paths in the visibility graph
represent the set of physical trajectories that a moving object can take without passing through an
obstacle.

Visibility graphs are a highly useful construct in robot motion planning when the terrain knowledge
is available in advance. Obstacles in the terrain are represented as polygonal objects, whose vertices
define the set of vertices V in our visibility graph Gv. Once the visibility graph is constructed, finding
an optimal path in the visibility graph reduces to finding the shortest-cost path between any two
vertices in Gv; for this, any standard shortest-path algorithm can be used. In this project, we use
the classic Dijkstra’s shortest path algorithm [5].

Since edges in the visibility graph are straight line segments, the shortest path in the visibility graph
follows the straight line segments except at the vertices of the obstacles, where the path assumes a
new direction. Since robots have non-zero size, to prevent the robot from actually colliding with the
corner of the obstacle, object sizes are expanded to include a buffer region around the actual object;
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Figure 5: A subset of the visibility graph in a multi-polygon obstacle environment. The cluster of
points in the top right corner are a set of starting locations that are also vertices in the visibility
graph.

the corners of the expanded obstacles will then become the vertices of the visibility graph.

An O(n2) algorithm for constructing the visibility graph in a plane of n non-intersecting line segments
is described in [20]. For this project, we used the Visilibity library [16], a free and open source com-
putational geometry library written in C++, that computes the visibility graph of a given polygonal
environment, and can then be used to find the optimal path between any two locations. A subset of
the visibility graph for one of the test environments in our project is shown in Figure 5.

3.5 Algorithms for Finding Optimal Routes

Based on our literature search and experimental comparison, we tested several route planning meth-
ods which were the Brute-Force method, the Greedy Algorithm and Linear Programming. Per-
formance of each of them depend on the numbers of PUPs and DOPs. From our experimental
simulation, we showed that the Brute-Force method and Linear Programming could be effectively
used for small numbers of nodes and both will provide optimal solutions. As the number of nodes
increases, a Greedy Algorithm proved to be much faster, but at a cost of returning sub-optimal
solutions.

The following notation will be used in the next few sections: P denotes the set of pick-ups and Y
the set of drop-offs, the S represents the start point and E is the exit point.
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3.5.1 Brute-Force Search

Brute-Force search, although trivial, is still widely-used for its simple implementation and effec-
tiveness. Brute Force will always find a solution when it exists. The algorithm searches through
every possible route while calculating and comparing the cost until it finds an optimal solution. The
following pseudo-code uses Brute Force to solve our problem:

function [ b e s t route , l e a s t c o s t ]= b r u t e f o r c e s e a r c h ( cost matr ix , S ,E,Y,P)
p o s s i b l e r o u t e=f i n d a l l p o s s i b l e r o u t e (S ,E,Y,P) ;
c o s t s=c o s t f o r t h e r e l a t i v e r o u t e ( p o s s i b l e r o u t e ) ;
[ b e s t route , l e a s t c o s t ]= the op t ima l r ou t e ( p o s s i b l e r o u t e , c o s t s ) ;

end

Brute Force is not computationally efficient when the problem size becomes too large, since the
computational complexity grows combinatorially, hence the need for more efficient methods.

3.5.2 Greedy Algorithm

One of the choices of a medium sized problem is the Greedy Algorithm, which is widely used in
data-mining and machine-learning field and gives good results that are often nearly optimal.

The Greedy Algorithm returns the locally optimal solution at each step, which in general leads to a
good feasible solution, if not optimal [4]. In our implementation, each robot starts from the Entrance
and then moves to the next unvisited least cost node, with the constraint that the vehicles maintain
a non-negative purple-to-yellow square count. This count increases by +1 when the vehicle stops
at a purple square and decreases by -1 at a yellow square. A valid path may visited several purple
squares in succession, but the count must never be less than zero. The Greedy Algorithm based
pseudocode for route search is given below:

function [ b e s t route , l e a s t c o s t ]= greedy sea rch ( cost matr ix , S ,E,Y,P)
v i s i t e d m a r k e r = [ ] ;
while ( have some unv i s i t ed po in t s )

next s top = n e x t l e a s t c o s t ( cos t matr ix , v i s i t e d m a r k e r ) ;

i f ( i s l e g a l ( next s top ) )
v i s i t e d m a r k e r = [ v i s i t ed marker , next s top ] ;
else

marke r i t unreachab l e ( next s top ) ;
end

end

3.5.3 Multi-Robot Based Greedy Algorithm

With the possibility of vehicle failure, a multi-vehicle solution seemed prudent. The multiple traveling
salesman problem is discussed extensively in the literature, e.g. [2] as has the multiple vehicle routing
problem [15], but the problem of visiting nodes in a particular order is not well covered.
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For this project, we applied a multi-vehicle based Greedy Algorithm, which guides several vehicles
to diversely spaced nodes simultaneously. The Greedy Algorithm is well suited to a dynamic maze
in which walls move during the course of the vehicle traversing the path. Should a planned path
close, or a previously walled off area open, the Greedy Algorithm may be quickly re-run using the
robot(s) current positions as the new starting points.

3.5.4 Linear Programming

Determining the optimal path sequence through the nodes (Entrance, PUP, DOP, and Exit) may be
formulated as a Linear Programming (LP) problem. The general Linear Programming problem is
expressed as

minimize cTx

subject to Ax ≥ b

and x ≥ 0

where x is a vector of variables to be determined, c is a cost vector, A is a coefficient matrix, and b
is a vector of constraints. It can be shown that the solution region is bounded by a 2-dimensional
polytope and the optimal solution exists at one of the vertices. For this problem, x represents the
transition matrix from node to node, or may be viewed as the edge graph for the optimal solution.
The problem of finding an optimal path is equivalent to solving a travelling salesman problem which
is known to be NP complete meaning that a solution may be verified in polynomial time, but there
is no fast method to generate a solution. As such, finding an LP solution is expected to grow
exponentially with the number of nodes in the problem.

The rules of the problem add further complexity due to the fact that at least one more pick-up
point must be visited than drop-off points. That is, a ground vehicle must have an object on board
obtained at a PUP before arriving at a drop-off location.

1. The ground vehicle must begin at the Entrance.

2. It must stop at at least one PUP prior to visiting a DOP.

3. All ground vehicles should stop at as many PUPs and DOPs as possible to accumulate the
maximum number of points.

4. Once the vehicle stops at a PUP or DOP, that point becomes a regular grid and no further
points may be obtained if it is revisited.

5. At least one ground vehicle must stop at the Exit, and then return to the Entrance.

6. Hazards may be crossed, but at a penalty.

In the solution, the entries of the transition matrix x are either 0 or 1 where xij = 0 means that a
path from node i to node j is not possible, while a path exists if xij = 1. Note that a constraint is
that both xij and xji cannot both be 1 because this would imply that it is possible to travel from
one node to another and then back. This constraint may be sharpened by requiring that

xij + xji ≤ 1

since the optimal solution will not have a path between most pairs of nodes (just the ones constituting
the actual path). The full set of constraints are the following:
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Number of PUPs Sequences Without Exit Sequences with Exit

1 1 3

2 8 40

3 180 1260

4 8064 72576

5 604800 6652800

Table 1: Sequence Numbers with Growing PUPs and DOPs

1. xii = 0 for all i. A path cannot loop from a node back to the same node.

2. xij + xji ≤ 1 for all i 6= j. At most one path may lead from one node to another.

3.
∑n

i=1 xij = 1 for all j. Exactly one path arrives at a node.

4.
∑n

j=1 xij = 1 for all i. Exactly one path leads away from a node.

5. The solution may not be permutable into a bipartite graph. In other words, solutions with
more than one complete circuit are not permitted.

Generating the matrix A for this last constraint required a rapidly increasing number of equations as
the number of nodes increased. For 6 nodes this resulted in 55 constraints, 8 nodes required 500 and
for 10 the number reached 8865. Finally, the output may not satisfy the condition that the number
of PUPs visited must exceed the number of DOPs visited so far on the path. If such a solution is
obtained, the path cost for a set of nodes violating this condition is increased and the program rerun.
Many routines are available for solving Linear Programming problems, and the one chosen for this
project was Matlab’s bintprog function.

3.6 Results

From Table 1, we can easily see that when the numbers of PUP, which is equal to the number of
DOP, is no more than 4, it’s more efficient to use the Brute-Force approach, since it is more efficient
in the computation efficiency.

The comparison between computational times of those three methods is given in the Figure 6.

For our one agent based greedy algorithm, Figure 7 shows the path, which the single robot follows
during its work. Figure 8 shows the separate path of each robots, when robots are working simulta-
neously. From Figure 9, we could see our multi-agent based greedy algorithm reduces the paths cost
efficiently with the number of robots growing.

4 Future Work

The optimal path solution for the ground vehicle traversing the arena from entrance, through the pick-
up points, drop-off points and exit requires processing one or more aerial images of the environment,
converting these images into a ”bird’s-eye” view, then applying edge and corner detection to identify
the non-navigable areas, and color detection to identify the PUPs and DOPs as well as hazards. The
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Figure 6: The Time Difference (left) and Cost Difference(right)

Figure 7: Path of One Robot
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Figure 8: Paths of Two Robots

Figure 9: Path Costs with Two Robots
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image processing portion of the problem has not been investigated in this study and will require
further work. For the path planning work done here, the Greedy and Brute-force algorithms as well
as the Linear Programming method all have deficiencies. Brute-Force and LP are computationally
expensive but provide complete solutions for small order problems. The Greedy Algorithm is fast,
but is known to return sub-optimal solutions. Other methods not investigated here are modifications
to the Travelling Salesman Problem to include the PUP and DOP constraints, or application of
Genetic Algorithm variants.

The corner detection method assumes that each observed block is contained in the interior of the
arena. When an edge of a block coincides with the arena boundary, corner points must be adjoined
to the list of boundary corners, and the orientation must be corrected. The visibility graph function
requires that interior points be ordered in clockwise fashion while the exterior boundary must be
counter-clockwise, following the well known right-hand rule to maintain correct orientation.

Many algorithms have been developed to calculate distances between nodes. The visibility graph
method was chosen for this project due to ease of implementation and the fact that it provided an L2
norm on the space. Other methods considered used the L1 norm (taxicab geometry) which resulted
in ambiguous path choices in an open arena. The L1 norm is more suitable for a maze or inner city
driving.

5 Conclusion

After modification of standard maze generation techniques, we were able to generate arenas that
closely resemble the arena expected for the autonomous robot challenge. These simulated environ-
ments provided the means to test corner detection, visibility graph algorithms and path planning
techniques. We showed that for small numbers of intermediary nodes, the Brute-Force and Linear
Programming methods will give globally optimal solutions, and we developed a novel multi-agent
Greedy Algorithm that adapts well to dynamically changing environments.
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Abstract

An optimization model with the economic objective of maximizing pumped groundwater and minimizing
saltwater intrusion is developed. The proposed optimization model–S-Well–is based on the semi-anlaytical
solution by Strack [12] with the assumptions of the sharp interface and vertically integrated flow. The saltwater
intrusion problem is reduced to solving potential flow with a search for two-dimenional space for the saltwater
toe location. A simple genetic algorithm (GA) is used for the optimzation. Aquifer parameters such as
hydraulic conductivity and aquifer thickness, freshwater outflow, and recharge rate are either uncertain or
random. To calibrate the S-Well Optimization model under these uncertain conditions, the Monte Carlo
sensitivity analysis is presenented. The proposed optimization model–S-Well–is then applied to a hypothetical
unconfined coastal aquifer in Pajaro Valley, California as a test problem. Finally, we discuss the optimal
location of wells given a virgin land and solve the Pareto curve for the cost versus output dual-objective
optimization problem.

1 Introduction

Groundwater represents about 30 percent of all fresh water on the earth, polar ice represents 69.7 percent,
while other freshwater in rivers and lakes represent about 0.3 percent [14]. Groundwater is a vital resource
for sustaining the communities and economies of the coastal regions in the world. One-third of the world’s
drinking water is provided by groundwater. In the United States, it is the source of drinking water for about
half the total population and nearly all of the rural population, and it provides over 50 billion gallons per day
for agricultural needs [15].

As major sources for freshwater supply in many countries around the world, groundwater aquifers play an
important role in water management. In many coastal areas, high urbanization rates and agricultural growth
have increased the groundwater demand. While the available water resources are nearly constant, to secure
such demand is a great challenge. Wells have been drilled excessively to satisfy this demand.

The proximity of coastal aquifers to saltwater creates unique issues with respect to groundwater sustain-
ability in coastal regions. Overdraft from coastal aquifers and thus saltwater intrusion (SWI) toward aquifers
cause ’unacceptable’ draw-down and deterioration of water quality. High salinity of groundwater limits its
usage for irrigation and drinking purposes unless desalinated or mixed with lower salinity water. Hence, the
protection of groundwater resources becomes an essential matter under the conditions of increasing demands
and decreasing available resources. To ensure a longterm sustainable water supply, withdrawal and manage-
ment policies are necessary. The objective here is to maximize the net benefit of water use, subject to the
constraints of no-saltwater-intrusion into the wells, installment constraints, and restrictions on the placement
of pumping wells.

Initial efforts to improve the fresh water supply in coastal aquifers via optimization techniques started in
the early 1970s. Previous reviews of SWI models can be found in Cummings [5], Shamir [11], El Harrouni
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3Texas A&M University
4McGill University
5University of Tennessee, Knoxville
6University of Notre Dame
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et al [6], and Cheng et al [4]. Most of the previous approaches have been involved with various management
objectives. The uncertainty in modeling issues is presented by some researchers such as Benhachmi et al [2].
In the present work, the optimization problem formulated is solved by using the genetic algorithm technique
by Aral and Guan [1]. The method developed is applied to the previous work by Cheng et al [3] and a
specification is provided to demonstrate the use of the model.

The objectives of this paper are twofold: first to provide an optimization model for SWI and, second
to present a preliminary predictive uncertainty analysis in modeling issues. For the optimization model, we
develope a multi-objective approach to determine pumping rates and well placement while satisfying desired
extraction rates in coastal aquifers and avoiding SWI. The objective is formulated based on the analytical
solution for the steady state SWI model (see equation1).

φ = q
Kx+ Q

4πK ln
[
(x−xw)2+y2

(x+xw)2+y2

]
(1)

2 Model and Methods

2.1 Optimization Model

As with many saltwater intrusion problems, our first objective is to maximize the sum of the pumping
rates of the wells. In turn, these wells have pumping capabilites which must be taken into account. Unlike
many other models, another objective, in this model, is to place the wells as close as possible to the coastline
in order to avoid the increased cost of well installation further from the coast. This, of course, restricts the
first objective. In addition, we assign a penalty to wells which encounter encroachment so as to limit saltwater
intrusion. Per Park and Cheng [9, 3], we combine these objectives and constraints into one objective function
by rewriting and normalizing. The optimization model is as follows:

max
n∑
i=1

α

(
Qi

Qi
max

)
+ β

(
xref
xsi

− 1

)
−

n∑
i=1

γ
(
xdiff

i
)2

where xtoe
i + xdiff

i = xs
i

and γ =

{
c1 xdiff

i < 0
0 elsewhere

(2)

Here α and β are weighting constants. See Table 1 for an explanation of the symbols in equation 2.

Symbol Explanation

c1 any large constant
Qi pump rate for well i
xref reference coastline location
xi x coordinate of well i
xs
i stagnation point for well i

xdiff
i slack variable for well i

xtoe
i toe location for well i

Table 1: Explanation of symbols for the optimization model, equation 2.

Note that this model assumes a sharp-interface, meaning that the region separating the saltwater and
freshwater is thin in comparison to the depth of the groundwater aquifer. Additionally, we assume steady
state conditions and that the aquifer is homogeneous. Furthermore, the model adopts the Dupuit assumption,
allowing us to consider a two-dimensional domain as opposed to a three-dimensional domain. Moreover,
the Badon-Ghijben-Herzberg (BGH) principle, which assumes that stagnant water is used to interpret the
interface location, is supposed. Finally, the single-potential theory approach is assumed, giving continuity
over the freshwater and saltwater zones [9].
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After determining the basic model, we applied a genetic algorithm in order to calibrate the model. Specif-
ically, we ran simulations with regard to Pajaro Valley. Pajaro Valley is located in Santa Cruz County of
California; at approximately 120 mi2, it is the largest farming area in the county. As such, its economy is
heavily dependent on its water supply for agricultural and domestic uses, among others. Dry farming was
prevalent in the valley in the mid-to-late 1800s, but the valley has gradually transitioned to crops which require
more water. Its current water demand is 55,000 acre-feet per year, two-thirds of which is met by groundwa-
ter. Among the valley’s main sources of recharge to groundwater aquifers are rainfall, irrigation return, and
infiltration of surface water [8].

2.2 S-Well Algorithm

The S-Well algorithm is our ”Simple Well Genetic Algorithm”. This algorithm was created by us in
MATLAB. First, the genetic algorithm (GA) is set up for specific parameter values: q, K, upper and lower
bounds on Q, and the x and y domain. If we are fixing the location of the wells (i.e., not allowing the
algorithm to move them) then the x and y coordinates of each well is also provided. Other parameters, such
as the population number, and number of generations, survivors, breeds, and mutants, are also defined. The
S-Well algorithm then maximizes the sum of all pumping rates while avoiding encroachment. Encroachment
is defined as the point when the toe line has coordinate values that are within ± 1 grid point of a well’s y
location and greater than (beyond) a well’s x location. The objective functional used in the S-Well algorithm
is:

max
n∑
i=1

αQi −Qmax · (number of toe points that encroach) (3)

The first generation is generated by slightly mutating a seed solution. For our work, a seed solution provides
the locations of four wells and their respective pumping rates. Because we have fixed locations in the S-Well
algorithm, the mutation is only applied to the pumping rates. In the process of generating the seed mutations,
each pumping rate has a fifty percent chance of being mutated and the mutation factors range randomly
from 0.75 to 1.25. In our model we generate 36 mutations for our first generation. The objective function is
calculated for each of the 36 solutions; the solutions are ranked by the objective, from greatest to least and
the top 13 are kept as survivors for the next generation. We then create 18 breeds via matings between the
36 solutions of the first generation. The mating pairs are chosen randomly for each of the 18 breeds, however,
the probability of being selected to breed is proportional to the solution’s performance as determined by the
objective functional. In order to find the probability of mating, we first raise each objective score of the 36
solutions to the power of 6, thereby augmenting the advantage of the better perfoming solutions. Next, the
new scores are normalized against the sum of the new scores to give the probability of each solution breeding.
Finally, we create five additional solutions by mutating only the best solution of the first generation. This
mutation process is the exact same as that which was used to mutate the seed solution. We now have 36
new solutions (13 survivors, 18 breeds, and 5 mutants) that make up our second generation. The objective
function is then evaluated for each of these solutions and the process of survival, breeding, and mutating is
repeated. This comprehensive process is repeated until the termination criteria is achieved; in this case, the
termination criteria is simply completing 500 generations. See Figure 3 for a flowchart of the GA algorithm.

2.3 Well Thought-Out Well Placement

2.3.1 Get Well (but get them away from the coast)

We have thus far dealt with optimizing output and minimizing salt-water intrusion given a fixed number
of wells and fixed locations. From this, we observe that, the optimal solution can result in sacrificing a given
number of wells to achieve maximum output. This leads to the question, given virgin land, where are the ideal
well locations? Adding a few more constraints and running the problem through the optimizer more than
provides a maximal output, but at the expense of highlighting the flaws embedded into our idealized model;
the pumps are located at the edges of the domain. It must, then, be addressed that our coast is infinitely long.
The first advantage to increasing maximal output is, then, to place the wells as far apart from one another as
the domain allows. The other approach is to place the wells as far away from the coast as possible; wells at
the edge can pump more before the toe-line encroaches.
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Figure 1: Genetic Algorithm Flowchart

Parameter Symbol Parameter Explanation Parameter Value
K hydraulic conductivity 100
q freshwater outflow rate 0.6
d depth of aquifer 15

Qmin minimum pump rate 0
Qmax maximum pump rate 1500
xmin minimum x-value of well location 0
xmax maximum x-value of well location 1300
ymin minimum y-value of well location −400
ymin maximum y-value of well location 400

population number 36
number of generations 500

number of breeds 13
number of mutants 18

5

Table 2: Explanation of symbols for the optimization model and potential equation, equations 1 and 2 respec-
tively.

It appears the ideal well locations are simply stated: first, place them as far away from the coast as
possible and, second, as far apart from one another as possible. However, this seems far from the ideal
(realistic) solution and we need to take some other factors into account. First, wells may be necessary in
certain regions of the land mass to avoid transportation of water from other wells. Second, pumps are not
infinitely powerful and are subdued to maximum pumping rates. Lastly, we must acknowledge the financials
associated with the base cost of each well, the pumping rates of wells, and those associated with building
further away from the coast.

2.3.2 The Price, the Pumping, and the Pareto

We are presented with a dual-objective optimization problem; optimize the output and minimize cost.
Before we can begin to solve this, we need to develop a rough estimate of cost. We will take three things into
consideration: a base cost, pumping rate, and costs associated with the distance a well is placed from the
coast. The latter perhaps deserves some justification. We assume that wells farther from the coast will have
greater installation costs associated with the need for deeper holes. We can also assume that the majority of
one’s water needs are evenly distributed throughout the landmass, and placing all the wells along the boundary
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(d) Fourth Generation Solutions

Survivor (1): 
EP: 0.000e+000, PB: 892, 

Total: 8.921e+002

0 500 1000
400
200

0
200
400

Survivor (2): 
EP: 0.000e+000, PB: 890, 

Total: 8.904e+002

0 500 1000
400
200

0
200
400

Survivor (3): 
EP: 0.000e+000, PB: 872, 

Total: 8.720e+002

0 500 1000
400
200

0
200
400

Survivor (17): 
EP: 0.000e+000, PB: 871, 

Total: 8.705e+002

0 500 1000
400
200

0
200
400

Survivor (4): 
EP: 0.000e+000, PB: 867, 

Total: 8.668e+002

0 500 1000
400
200

0
200
400

Survivor (5): 
EP: 0.000e+000, PB: 858, 

Total: 8.579e+002

0 500 1000
400
200

0
200
400

Survivor (33): 
EP: 0.000e+000, PB: 855, 

Total: 8.553e+002

0 500 1000
400
200

0
200
400

Survivor (6): 
EP: 0.000e+000, PB: 855, 

Total: 8.552e+002

0 500 1000
400
200

0
200
400

Survivor (32): 
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(e) Fifth Generation Solutions (f) Best of 500th Generation Solutions

Figure 2: Output of S-Well Algorithm. Figure (f) shows the optimal solution after 500 generations with well
1 at (1000, 300), Q = 168.14; well 2 at (1200, 100), Q = 344.63; well 3 at (1200,−100), Q = 371.63; well 4 at
(1000,−300), Q = 145.84
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Figure 3: Optimal location of wells.

Cost (£)

Base cost 20, 000
Pumping rate Q× 10
Distance from coast x× 30

Table 3: Cost of well located at (x, y) with pumping rate Q.

will have subsequent costs associated with water transportation. Naturally all costs are in Well-sh currency,
the pound.

The optimization problem and resulting Pareto curve were solved using two different methods. We begin
with the first method, the Sweeping Method [7]. Given objectives f1 and f2, we create a single-objective
optimization problem with f1 as the objective function and f2 as a constraint. We then run this optimizer n
times, with n values for f2 evenly distributed between it’s minimum and maximum, a sweep. Depending on the
nature of the Pareto curve, it may be desirable to repeat this process exchanging the roles of f1 and f2. This
problem, however, yields a relatively tame Pareto curve and one sweep is satisfactory. For the single-objective
optimization, we used the NSGA2-algorithm. The second method was to again use the NSGA2-algorithm,
this time with it’s multi-objective capabilities resulting in the same Perato curve.

2.4 Sensitivity Analysis

2.4.1 Introduction

The usefulness of our model here depends in part on the accuracy and reliability of the outputs. Yet, be-
cause our models are always imperfect simplifications of real-world systems, and because input data cannot be
perfectly accurate, and may vary from time to time, the model outputs are subject to imprecision. Sensitivity
analysis (SA) is the study of how the uncertainty in the output of a model can be apportioned to different
sources of uncertainty in the model input. In this model, there are some uncertainty in several parameters,
such as the hydraulic conductivity K and the uniform freshwater outflow rate q. In Cheng’s paper, these values
are assumed to be constants. Since there is always some uncertainty in the data, it is useful to know over
what range and under what conditions the components of a particular solution remain unchanged. Further,
the sensitivity of a solution to changes in the data gives us insight into possible technological improvements
in the process being modeled. Sensitivity analysis provides an invaluable tool for addressing such issues. Its
procedures explore and quantify the impact of possible errors in input data on predicted model outputs. Sim-
ple sensitivity analysis procedures can be used to illustrate either graphically or numerically the consequences
of alternative assumptions about the future.

There are a number of questions that could be asked concerning the sensitivity of an solution. In our
models here, for example, the geological parameter K, hydraulic conductivity, varies for aquifers in different
areas, and even varies in different layers in an aquifer. Also model parameter q, uniform freshwater outflow
rate, is highly related to rainfall, and historical records of rainfall data are used as a basis for our model inputs.
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Figure 4: Perato Curve

Yet such precipitation conditions in the future may change. That gives the necessity of performing sensitivity
analysis.

Regarding the methodologies, there are several possible procedures to perform uncertainty and sensitivity
analysis. Commonly used methodologies include automated differentiation, methods based on emulators,
screening methods, variance based methods, methods based on Monte Carlo filtering; the list goes on. Here
we use Monte Carlo method to perform sensitivity analysis with respect to our model parameters K and
q. This Monte Carlo method first selects a random set of input data values drawn from their individual
probability distributions. These values are then used in the simulation model to obtain some model outputs.
This process is repeated many times, each time making sure the model calibration is valid for the input data
values chosen. The ending results will show how model outputs behave when inputs vary.

2.4.2 Analysis for hydraulic conductivity K

The Hydraulic conductivity, K, is one of the most important parameters for optimizing pumping rate
and well locations with constraints, i.e. that no saltwater intrusion. Different values of hydraulic conductivity
were applied to investigate the sensitivity analysis of this parameter in the optimization of pumping rate and
well locations.

In Cheng’s paper, the hydraulic conductivity K is a constant, which was assumed to be 100 m/d (meter per
day). To do the sensitivity analysis for K, it is necessary to estimate some representation of the variances of the
parameter K with some consistent procedure. For a normal distribution, the distance between the 5th and 95th

percentiles is 1.645 standard deviations on each side of the mean, that is approximately 3.3 standard deviations.
Here we use real data with a mean value m = 15.4 meter per day, and a standard deviation std = 1.25 meter
per day for K. Thus, if the high or low range is thought of as approximately a 5 − 95 percentile range for a
normally distributed variate, a reasonable range for K might be [m− 3 × std,m+ 3 × std]. Here we consider
lognormal distributed values for K.

By Matlab code, we then get the toe-tracking graph (in Figure 5) for a single well. In Figure 1, the star
stands for the well location and the black, red, and blue lines refer to the the tracking toes. If the x axis value
of a point on the line is greater than the x axis value of well location (which is 1000 here), then it means
that it has intrusion of the saltwater front into the well. Figure 1 shows us that the most of the values for
K we used in our model is reasonable. We use the data about 1000 lognormal distributed values for K, and
find that for 18.2% K values, we get intrusion and 81.8% of all these K values subject to the constraint of no
intrusion of the saltwater front into the well.

The abnormal red tip on the red curve means that the toe movement is sensitive to the hydraulic con-
ductivity K near the well. Near the well, the toe line changes relatively significant when the input value K
changes a little. Therefore, to optimize the pumping rate for a single well, we need a more accurate value for
hydraulic conductivity K near the well.
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Figure 5: SA K: Saltwater intrusion front for a single pumping well

Figure 6: SA K: Saltwater intrusion front for 4 pumping rate optimized wells
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Figure 7: SA K: Saltwater intrusion front for 15 pumping rate optimized wells

We also considered multiple wells with optimized pumping rates, and found that the toe movements are
locally sensitive to the hydraulic conductivity K near all the wells. In Figure 2 and Figure 3, 4 and 15
wells with optimized pumping rates are considered respectively. Near the wells, the toe movements change
significantly when the input K values changes a little. Similar to the single well case, to optimize the pumping
rate for multiple wells, we need more accurate values for hydraulic conductivity K near all these wells.

2.4.3 Analysis for uniform freshwater outflow rate q

Besides the hydraulic conductivity K, there are some uncertainty in the uniform freshwater outflow rate
q. Different values of uniform freshwater outflow rates were applied to investigate the sensitivity analysis of
this parameter in the optimization of pumping rate and well locations. The uniform freshwater outflow rate
q has a great influence on the optimization problem. Generally speaking, the higher the uniform freshwater
outflow rate q is, the higher the optimized pumping rate will be. The higher the uniform freshwater outflow
rate q is, the harder wells can pump subject to the constraint of no intrusion of the saltwater front into the
wells. On the other hand, uniform freshwater outflow rate q is influenced by rainfall data. In general, the
more rain falls, the higher the uniform freshwater outflow rate q will be.

Similar to what we did for the hydraulic conductivity K, we considered lognormal distributed values for q.
We considered multiple pumping rate optimized wells, and found that the toe movements are locally sensitive
to the uniform freshwater outflow rate q near all the wells. The curves in Figure 4 shows the movements of
toes when we vary the values for q. Figures 4 and 5 represent the influence of uniform freshwater outflow rate
on the corresponding 4 and 15 pumping rate optimized wells. The movements of toes vary a lot when we the
values for q vary a little. That’s to say that the toe movements are sensitive to the parameter q. In summary,
to optimize the pumping rate for multiple wells, we need more accurate values for uniform freshwater outflow
rate q near all these wells.

2.4.4 Summary

Determining the appropriate values to assign to the numerical items (the input variables) in a model is a
critical and challenging part of the model building process in decision analysis. But finding numerical values
for real problems requires gathering relevant data, which can sometimes be difficult. As a result, we often
use rough estimates. Because of the uncertainty about the true value of a numerical item, it is important to
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Figure 8: SA q: Saltwater intrusion front for 4 pumping rate optimized wells

Figure 9: SA q: Saltwater intrusion front for 15 pumping rate optimized wells
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determine how the solution derived from the model would change (if at all) if the numerical value assigned
were changed to other plausible values.

3 Discussion

There are several approaches to multi-objective problems, such as fitness sharing, the niche approach [9],
and even gradient methods [3]. However, because we do not know our solution space a priori, we have chosen
the GA method as it does not require that it be continuous. Unfortunately, the GA can be less efficient,
requiring more time to run its evaluations.

Our model and simulations are preliminary; they are an idealization of reality. Obtaining data, particularly
recent data, on Pajaro Valley remains challenging; Pajaro Valley has been sorely understudied. Should more
recent and accurate data pertaining to Pajaro Valley become available, it would be worthwhile to revisit the
simulations to revise our parameter estimates. While parameters such as Q, d, and the domain in our model
are scaled versions of the true (albeit outdated) figures for Pajaro Valley, others such as K and q are adopted
from Cheng [3] in order to have successful runs of the S-Well algorithm. Note, however, that K and q are able
to be calculated and scaled given data on Pajaro Valley, but the scaled calculations fail to allow the algorithm
to run. In addition, our model neglects time, flow, and mixing, all of which have the potential to improve our
model by making it more realistic. Finally, once we are able to refine the model, we are interested in applying
numerics to obtain numerical solutions.

This group has a particular interest in incorporating the monetary costs of manufacturing, placing, and
maintaining wells into the model as this could have a considerable impact on the direction of the decision
makers when judging the course of action to address declining resources.
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A S-Well Algorithm Code

%% multiPumpingWellFixedLocGa
 
 
%% %%%%%% Initilization %%%%%%
clearvars
 
 
 
%% %%%%%% Options & Variables %%%%%%
 
% Physical Options
K = 40         ;   % hydrolic conductivity m/d
q = 0.4015         ;   % uniform freshwater outflow rate m^2/d
d = 14          ;   % elevation of mean sea level above the datum m
rho_f = 1       ;   % freshwater density g/cm^3
rho_s = 1.025   ;   % saltwater density g/cm^3
s = rho_s/rho_f ;   % saltwater to freshwater density ratio
 
% Domain Definition
xMin = 0 ;
xMax = 4000 ;
nx = 1000;
 
yMin = -4000 ;
yMax = 4000 ;
ny = 2000 ;
 
 
x = linspace(xMin,xMax,nx);
y = linspace(yMin,yMax,ny);
[X,Y] = meshgrid(x,y) ;
 
% Genetic Algorithm Options
genNumber = 200;
popNumber = 25;
surviveNumber = 10;
breedNumber = 14;
mutationNumber = 1;
minMutationFactor = 0.5 ;
maxMutationFactor = 1.5 ;
probAugmentFactor = 5 ;
 
% Optimization Constraints
optimizeToeLine = false;
lbQ = 0 ; % Q lower bound
ubQ = 1500 ; % Q upper bound
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B Pareto Code

from pyOpt import NSGA2
from pyOpt import Optimization
import numpy as np
from objfunctionex import objfunc
import os
from math import pi, sqrt, log
import re
from matplotlib import pyplot, pylab

#Constants

Const={'K':100.,
       'q':0.6,
       'd':14,
       'num_wells_M':4,
       'rho_s':1.025,
       'rho_f':1.}

Const['s']=Const['rho_s']/Const['rho_f']

#Domain

D={'x_m':0., #minimum x for bounds
   'x_M':4100., #maximum x for bounds
   'y_m':-1600., #minimum y for bounds 1600
   'y_M':1600., #maximum y for bounds 1600
   'x_m_well':1000.} #minimum x for well location

D['x_M_well']= D['x_M']-100. #maximum x for well location 100
D['y_m_well']= D['y_m']+100. #minimum y for well location 100
D['y_M_well']= D['y_M']-100. #maximum y for well location 100

X=np.arange(D['x_m'], D['x_M'], 20.)

def optimizer_setup():
    
    #Setup the optimization problem

    optprob=Optimization('Optimal well arrangement given cost', objfunc)

    #Objective functions
    optprob.addObj('f1')
    optprob.addObj('f2')
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import numpy as np
from math import cos, atan, sqrt, pi, log, floor

def multiWellPotential(q,K,Q_list,X,Y,x_w_list,y_w_list):
    """
    Multiple well potential from Cheng
    Assumes q,K are scalars
    """
    #should/could check that arrays have the same shape
    phi = np.zeros(X.shape,'d'); tmp = np.zeros(X.shape,'d'); 
    phi_i= np.zeros(X.shape,'d')
    for Q,x_w,y_w in zip(Q_list,x_w_list,y_w_list):
        dist = np.power(X-x_w,2); dist += np.power(Y-y_w,2)
        tmp = np.power(X + x_w,2); tmp += np.power(Y-y_w,2)
        tmp = np.divide(dist,tmp); 
        tmp = np.where(tmp > 0,tmp,1.0e-8)
        tmp = np.log(tmp);
        tmp *= Q/(4.0*np.pi*K)
        phi += tmp
    #
    tmp[:] = X; tmp *= (q/K)
    phi += tmp

    phi = np.where(phi >= 0,phi,0.0)
    return phi

def depth_unconfined(phi,s):
    """
    compute the interface depth for an unconfined aquifer
    """
    xi = np.copy(phi)
    xi *= 2.0/(s*(s-1))
    xi = np.sqrt(xi)
    return xi

def compute_interface(xi,d):
    """
    compute the interface depth for an unconfined aquifer
    """
    interface = np.copy(xi)
    interface -= d
    interface *= -1.0
    interface = np.where(interface >= 0, interface,0.0)
    return interface

def objfunc(x, Const={}, D={}, X=[]):15



Inspection of Composite Assemblies Using a Non-destructive Approach
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Abstract

Acoustic emissions (AE) occur naturally from materials subjected to stress. For example, a material may
emit acoustic emissions caused by of redistribution of internal stresses in the material upon being compressed.
The presence of AE can be used to indicate the creation and growth of micro cracks among other defects [9].

AE is classified as a non-destructive test. No external stimulus is applied; one only measures AE signatures
the material naturally emits. One of the attractive features of AE analysis is that it is a portable test that can
give real time information about the status of working systems like airframes, pressure vessels and pipelines
[17].

In this report we analyze the AE experimental results of a destructive test applied to some composite
material samples. Each composite sample is either from a control group, a group with an unspecified defect 1,
or an unspecified defect 2. Parameter subset selection analysis is completed, then classification methods are
applied to delineate between a control piece and a defective piece. Finally, we examine methods to predict the
plastic deformation and breaking loads from the acoustic emission signatures.
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1 Introduction and Motivation

LORD Corporation is a leading global company specializing in adhesives, coatings, vibration and motion
control, and magnetically responsive technologies. They develop new materials that are used in critical ap-
plications such as military and aerospace systems. The composite materials can have defects which need to
be detected during manufacturing. The goal set forth by LORD for this project was to determine a model
from the acoustic emission data that could allow them to perform non-destructive inspection for defects of
composite products manufactured.

This problem was presented as part of the 2012 Industrial Math/Stat Modeling Workshop for Graduate
Students administered by the Statistical and Applied Mathematical Sciences Institute (SAMSI) and the Center
for Research in Scientific Computation (CRSC) at North Carolina State University. Graduate students from
around the world apply for the workshop, and are then presented a problem and given one week to work on
solutions. Students come from mathematics, statistics, and engineering backgrounds and as a result approach
the problems in different ways; together, the hope is that different backgrounds result in novel approaches to
the problems. In this document, we demonstrate how combining different approaches and tests has resulted
in the underpinnings of a novel methodology for using AE to analyze composite materials non-destructively.

2 Description of the Data

Understanding the data is the first step of analysis. The AE data obtained from LORD is separated into three
groups: control, defect 1 and defect 2. Each group contains twenty tests Each test was performed on a separate
composite assembly; the composites manufactured to be as identical as possible within each group. For each
test, a load was applied and removed three times to evoke acoustic emissions, with the peak load increasing
each time the load was re-applied. Finally, a fourth load was applied to break the composite material. The
first two loads applied do not yield much emission data compared to the third load applied. Upon consultation
with LORD, we largely did not use data from the fourth load because this load cycle is continued until the
composite material breaks; we want to predict the performance of the part using only the acoustic emissions
in the first three nondestructive loads. Once the composite is broken, it is useless (except, of course, for our
testing purposes). We will examine the first three load blocks in prediction modeling. In particular, we will
also examine the prediction power of the third block by itself since the first two blocks contain relatively fewer
acoustic emissions than the third block.

For each of the three groups we were provided measurements of the acoustic signature for thirteen different
AE parameters during the tests of each composite material, some of which are suspected to be relevant in a
prediction model. We were also given the load applied to the sample at certain time steps. Figure 1 shows
plots of load applied versus time for the control, defect 1, and defect 2 groups. We can view each plot as having
four load cycles, which we also refer to as blocks; the composite breaks in the fourth block. For composites
with defects, the plastic deformation occurs during the third load block at about half the load compared to
the control data, which has deformation occurring on the fourth load around 3000 units. For data analysis we
segment the data into blocks, using the times corresponding with lowest loads between each loading cycle as
the separation points.

3 Exploratory Data Analysis

The general approach to statistical data analysis is to understand the data on a deeper level, in this case
without the use of an underlying mathematical/physical model. For our problem, LORD has studied the
physical properties of the composite material and wished for us to focus on statistical analysis of the AE data.
Here we explore the plots of parameters versus time in comparison to the load versus time plots, as well as
box plots and density plots of statistics on the parameters.

3.1 Visual representation of data samples

We first represent samples of data visually. Figures 2, 3, and 4 show plots of acoustic emissions over time for
parameter 5 above the corresponding plots of time versus load for each of the first three blocks, for the control,
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Figure 1: The load versus time (seconds) data for a test set of each group: control, defect 1 and 2. Blocks are
labeled by B1: block 1, B2: block 2, B3: block 3

defect 1 and defect 2 groups, respectively. We observe that the majority of the emission data collected occurs
near the peak of the load applied for each load block. This is most likely due to the Kaiser effect, which states
that when a material is stressed to a certain load and then removed, the material will not emit again until the
previous maximum stress level is exceeded [3].

3.2 Description of combined data

Having acoustic emission data for each group is useful, but individual emissions do not necessarily have much
structure. Instead, we will use various methods for combining data in order to tie individual acoustic emissions
together into groups like control, defect 1, and defect 2. One of these methods is simply combining all the
acoustic emissions across all 20 data sets. To do this, we combine the AE data for each parameter of the 20
tests together for control, defect 1 and defect 2. This pools all the AE data together into classes, providing
some additional structure for our analysis in the next two sections.

3.3 Box plots

In order to visualize the data and examine some basic statistics, we will create box plots [13]. A byproduct of
this will be some statistical knowledge of each parameter, which will later be of use in creating density plots
in the next section. To form a box plot, we complete the steps which follow.

1. The vertical axis displays the response variable while the horizontal axis displays the factor of interest.

2. Calculate the median, the 25th percentile and the 75th percentile quartiles.

3. Draw a line at the median and draw a box between the 25th percentile and the 75th percentile quartiles.

4. Calculate the interquartile range (IQR):

IQR = 75th percentile value− 25th percentile value (1)
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Figure 2: Scatter plot for Control group, data set 34178, for all three data blocks in this data set (top) Time
(seconds) versus acoustic emission parameter 5 (P5). (bottom) Time (seconds) versus load. N is the number
of data points in each sub-figure.
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Figure 3: Scatter plot for defect 1 group, data set 34182, for all three data blocks in this data set (top) Time
(seconds) versus acoustic emission parameter 5 (P5). (bottom) Time (seconds) versus load. N is the number
of data points in each sub-figure.
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Figure 4: Scatter plot for defect 2 group, data set 34186, for all three data blocks in this data set (top) Time
(seconds) versus acoustic emission parameter 5 (P5). (bottom) Time (seconds) versus load. N is the number
of data points in each sub-figure.

5. Calculate the lower bound (L1) and upper bound (U1) as follows, and draw a line at each bound.

L1 = 25thpercentile quartiles− 1.5IQR (2)

U1 = 75thpercentile quartiles + 1.5IQR (3)

6. Draw a line through lower bound to upper bound.

7. Draw all the data outside the lower bound and upper bound, which is seen as the outliers.

Using this method, we can produce a box plot for each parameter. From these plots of control data (e.g.,
see Figure 5), we consistently found outliers above the “upper bound” data line. As these are far from the
median, in our futher analysis using density plots we will exempt these points from the analysis (note that in
later methods, we will utilize all the data). Similarly for the defect groups, there were upper bound outliers.

3.4 Density plot

Before creating density plots, we take the upper bound U1 as defined in Equation (3) as a data threshold for
all the blocks and all the control, defect 1 and defect 2 groups; thus, only data below U1 is used. Then we
created the density plot for the data less than the bound for each parameter. Here we use the Kernel Density
Estimation [20] which is a method that uses a locally weighted averaging distribution. We assume the data
is an independent, identically distributed sample from a normal distribution, and the estimation of the data
density is a weighted average of the density at all the points. For the kernel K, we will use a Gaussian density.
The formula for the estimation is

f̂h(x) =
1

n

n
∑

i=1

Kh(x− xi) =
1

nh

n
∑

i=1

K(
x− xi

h
) (4)
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We use Silverman’s “rule of thumb” [19] to choose the bandwidth

h =
0.9A

n1/5
, (5)

where A = min{σ, IQR}, σ is standard deviation of the points being estimated, IQR is the interquartile range
as we calculated in (1), and the n is the number of data observations. So the estimation for the density is

f̂h(x) =
1

2πnh

n
∑

i=1

exp

[

−
(x− xi)

2

2h

]

. (6)

In Figures 6 and 7, we see that the density plots for the first two blocks seem to have similar means across
the control and defective composites. However, in the third block the means of the defective composites are
offset from the mean of the control group. This may indicate that the third block is important in classifying
composites as controls or defects. Since the defective composites have similar means, we may have difficulty
determining if a part belongs to the defect 1 or defect 2 group. Additionally, the number of data points in
the third block is significantly higher for all tests than in the first two blocks. This is an indication of the
importance of third block data.

4 Parameter Set Reduction

The first step of our analysis on this project was to examine ways to reduce the parameter set if possible. For
each test performed, thirteen variables were recorded. However, LORD suggested that we begin by examining
the importance of each parameter for its usefulness in predicting material type from acoustic emission data.

4.1 Correlation

The Pearson correlation coefficient, r, is a statistic that indicates the strength of the linear relationship
between two quantitative variables [4]. The value of r is contained between the interval [−1, 1], where an r
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Parameter number
1 2 3 4 5 6 7 8 9 10 11 12 13

P
a
ra
m
et
er

N
u
m
b
er

1 1.00 0.81 0.42 0.00 -0.25 0.56 0.58 -0.05 0.19 -0.11 0.04 0.13 0.81
2 0.81 1.00 0.67 0.01 -0.43 0.91 0.91 -0.11 0.52 -0.15 0.09 0.39 1.00
3 0.42 0.67 1.00 0.03 -0.70 0.74 0.78 -0.32 0.37 -0.18 0.20 0.24 0.68
4 0.00 0.01 0.03 1.00 0.06 0.03 -0.03 0.13 0.01 0.06 0.28 -0.03 0.01
5 -0.25 -0.43 -0.70 0.06 1.00 -0.47 -0.54 0.32 -0.22 0.34 -0.10 -0.15 -0.43
6 0.56 0.91 0.74 0.03 -0.47 1.00 0.95 -0.17 0.66 -0.12 0.13 0.49 0.91
7 0.58 0.91 0.78 -0.03 -0.54 0.95 1.00 -0.22 0.65 -0.18 0.00 0.54 0.91
8 -0.05 -0.11 -0.32 0.13 0.32 -0.17 -0.22 1.00 -0.16 0.10 -0.18 -0.17 -0.12
9 0.19 0.52 0.37 0.01 -0.22 0.66 0.65 -0.16 1.00 -0.02 0.07 0.92 0.52
10 -0.11 -0.15 -0.18 0.06 0.34 -0.12 -0.18 0.10 -0.02 1.00 0.05 -0.03 -0.15
11 0.04 0.09 0.20 0.28 -0.10 0.13 0.10 -0.18 0.07 0.05 1.00 0.04 0.09
12 0.13 0.39 0.24 -0.03 -0.15 0.49 0.54 -0.17 0.92 -0.03 0.04 1.00 0.39
13 0.81 1.00 0.68 0.01 -0.43 0.91 0.91 -0.12 0.52 -0.15 0.09 0.39 1.00

Table 1: Correlation coefficients for the thirteen parameters in the control data, block 3. Columns and rows
are denoted by the parameter number. For example, the correlation between parameters 3 and 4 is 0.03.

value closer to −1 or 1 indicates a stronger linear relationship between the two variables than a value near 0.
There is no variable dependence when r is close to 0. The sign on r indicates the direct (‘+’) or inverse (‘−’)
relationship between the two variables. While there are other correlation coefficients that are more sensitive to
nonlinear relationships, here we focus on Pearson’s correlation coefficient, which is the most common method
for determining correlation.

The sample correlation coefficient of the observed variables X and Y , both of size n, is defined as

r =

n
∑

i=1

(xi − µx)(yi − µy)

√

n
∑

i=1

(xi − µx)2

√

n
∑

i=1

(yi − µy)2

(7)

where µx and µy are the means of the data x and y, respectively [4].
In order to create a prediction model for the data in this paper, we first reduced the number of parameters

by appealing to the correlation coefficients across the data set. When two parameters were determined to
be highly correlated, we considered removing one of the two parameters from the parameter set as they
both contributed similar information in prediction modeling, and thus it was unnecessary to retain redundant
information. To determine which parameter was retained in the parameter set given two highly correlated
parameters, we kept the parameter with the least variance, as per the request of LORD.

Considering only the third block of the AE data, we obtained correlation coefficients of each group. The
correlation coefficients for the thirteen parameters in the third block of the control data are given in Table 1.
Correlation coefficients for the third block of the defect 1 data set are given in Table 2 while those for defect
2 are given in Table 3. All twenty tests were compiled into one data set per each group (control, defect 1, and
defect 2) for these calculations. Similar coefficients were produced when the entire data set (all three blocks)
was considered.

Note the diagonal in the each correlation table all have value 1.00 because a variable will be perfectly
correlated with itself. Furthermore, the correlation coefficient can be squared to explain how much variation
in one variable is explained by a linear model on the other variable. For example, in the control data given
in Table 1, parameters 6 and 7 have a correlation coefficient of 0.95. Thus r2 = 0.9025 indicates that 95%
of the variation in parameter 6 can be explained by a linear model on parameter 7, and vice versa, since the
correlation coefficient matrix is symmetric.

After examining Tables 1, 2, and 3, a perfect correlation of 1.00 is observed between parameters 2 and
13. While parameters 6 and 7 have strong correlation of r ≈ 0.95 regardless of the group (control, defect 1
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Parameter number
1 2 3 4 5 6 7 8 9 10 11 12 13

P
a
ra
m
et
er

N
u
m
b
er

1 1.00 0.68 0.20 0.00 -0.08 0.35 0.34 -0.02 0.06 -0.02 0.02 0.06 0.68
2 0.68 1.00 0.65 0.02 -0.35 0.85 0.86 -0.12 0.33 -0.10 0.12 0.23 1.00
3 0.20 0.65 1.00 0.07 -0.65 0.89 0.85 -0.35 0.43 -0.13 0.34 0.24 0.65
4 0.00 0.02 0.07 1.00 0.07 0.07 -0.01 0.09 0.03 0.13 0.28 -0.06 0.01
5 -0.08 -0.35 -0.65 0.07 1.00 -0.49 -0.53 0.37 -0.23 0.46 -0.16 -0.12 -0.35
6 0.35 0.85 0.89 0.07 -0.49 1.00 0.96 -0.23 0.52 -0.09 0.27 0.34 0.85
7 0.34 0.86 0.85 -0.01 -0.53 0.96 1.00 -0.26 0.49 -0.15 0.18 0.40 0.86
8 -0.02 -0.12 -0.35 0.09 0.37 -0.23 -0.26 1.00 -0.26 0.13 -0.24 -0.28 -0.12
9 0.07 0.33 0.43 0.03 -0.23 0.52 0.49 -0.26 1.00 -0.02 0.15 0.78 0.33
10 -0.02 -0.10 -0.13 0.13 0.46 -0.08 -0.15 0.13 -0.02 1.00 0.07 -0.04 -0.10
11 0.02 0.12 0.34 0.28 -0.16 0.27 0.18 -0.24 0.15 0.07 1.00 0.07 0.12
12 0.06 0.23 0.24 -0.06 -0.12 0.34 0.40 -0.28 0.78 -0.04 0.07 1.00 0.23
13 0.68 1.00 0.65 0.02 -0.35 0.85 0.86 -0.13 0.33 -0.10 0.12 0.23 1.00

Table 2: Correlation coefficients for defect 1 data, block 3. Columns and rows are denoted by the parameter
number. For example, the correlation between parameters 7 and 2 is 0.86.

Parameter number
1 2 3 4 5 6 7 8 9 10 11 12 13

P
a
ra
m
et
er

N
u
m
b
er

1 1.00 0.73 0.23 0.00 -0.09 0.46 0.42 -0.03 0.10 -0.02 0.03 0.07 0.73
2 0.73 1.00 0.65 0.01 -0.33 0.88 0.87 -0.11 0.33 -0.09 0.10 0.22 1.00
3 0.23 0.64 1.00 0.06 -0.66 0.86 0.82 -0.35 0.41 -0.12 0.33 0.23 0.64
4 0.00 0.01 0.06 1.00 0.07 0.05 -0.03 0.09 0.02 0.13 0.28 -0.06 0.00
5 -0.09 -0.33 -0.66 0.07 1.00 -0.48 -0.50 0.40 -0.23 0.45 -0.16 -0.11 -0.33
6 0.46 0.88 0.86 0.05 -0.48 1.00 0.96 -0.22 0.50 -0.08 0.23 0.32 0.88
7 0.42 0.87 0.82 -0.03 -0.50 0.96 1.00 -0.25 0.48 -0.14 0.15 0.39 0.87
8 -0.03 -0.11 -0.35 0.09 0.40 -0.22 -0.25 1.00 -0.25 0.13 -0.25 -0.27 -0.12
9 0.10 0.33 0.41 0.02 -0.23 0.50 0.48 -0.25 1.00 -0.03 0.13 0.79 0.33
10 -0.02 -0.09 -0.12 0.13 0.45 -0.08 -0.14 0.13 -0.03 1.00 0.09 -0.05 -0.09
11 0.03 0.10 0.33 0.28 -0.16 0.22 0.15 -0.25 0.13 0.09 1.00 0.06 0.10
12 0.07 0.22 0.23 -0.06 -0.11 0.32 0.39 -0.27 0.79 -0.05 0.06 1.00 0.22
13 0.73 1.00 0.64 0.00 -0.33 0.88 0.87 -0.12 0.33 -0.09 0.10 0.22 1.00

Table 3: Correlation coefficients for defect 2 data, block 3. Columns and rows are denoted by the parameter
number. For example, the correlation between parameters 12 and 2 is 0.22.
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Variance
Parameter Control Defect 1 Defect 2

1 9.7× 108 4.4× 109 5.6× 109

2 1.0× 103 5.1× 102 7.3× 102

3 6.7× 101 6.4× 101 6.9× 101

4 9.3× 103 7.4× 103 7.1× 103

5 3.5× 103 4.4× 103 4.3× 103

6 1.2× 104 3.5× 103 4.2× 103

7 1.1× 106 3.9× 105 5.0× 105

8 8.1× 104 8.1× 104 7.9× 104

9 7.1× 102 9.4× 101 1.1× 102

10 3.3× 103 3.6× 103 3.5× 103

11 7.0× 103 4.2× 103 4.0× 103

12 8.4× 104 1.2× 104 1.7× 104

13 3.9× 1010 2.0× 1010 2.8× 1010

Table 4: Variance of the thirteen parameters for each group (control, defect 1 and defect 2), using third block
data only.

or defect 2), it appears that parameters 2 and 13 are also moderately correlated with parameters 6 and 7,
with correlation values between .85 and .91. Thus, of the four parameters 2, 6, 7, and 13, only one should be
used in prediction modeling, according to the correlation coefficient results. Referring to the variances of the
parameters in Table 4, parameter 2 has the least variation, thus we may choose to discard parameters 6, 7,
and 13.

Parameter 1 has a correlation coefficient of .81 with parameters 2 and 13 for the control data, and a
correlation coefficient of .68 and .73 for defect 1 and defect 2 data, respectively. Thus it may be practical to
also remove parameter 1 from the set since it has a larger variance than parameter 2. Lastly, parameters 9
and 12 range in correlation across the groups from r = .78 to r = .91. Since parameter 9 has less variance, we
may opt to discard parameter 12.

Parameter reduction via correlation coefficients suggest the removal of parameters 1, 6, 7, 12, and 13, re-
ducing the thirteen parameter set to eight, though further inspection using other statistical means is necessary.

4.2 Significance testing

In this section, we use hypothesis testing to determine if specific functions of the AE data are significantly
different between the control and defective composites. Since we have many acoustic emissions in each data
set, the functions we use will be means, medians, and maximums of the AE data between composite types for
each test. We will also directly compare all the control and data set AE parameters for significance.

The significance will be determined by applying a t-test. First, we assume that the samples being compared
follow a normal distribution with different variances. Accordingly, we use Welch’s t-test [22], described in the
next section.

4.2.1 Welch’s t-test

Welch’s t-test is a generation of Student’s t-test, used with data sets that have different population variances
[22], which is a reasonable assumption for our data sets. In general, the t-statistic is defined by [18]

t0 =
µ1 − µ2

√

s1
1

N1

+
s2
2

N2

where µ1 and µ2 are the sample means, s21 and s22 are the sample variances, and N1 and N2 are the sample sizes
for the two populations, respectively. Based on the normal assumption, t follows the Student’s t distribution,
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with the degrees of freedom ν defined by

ν =

(

s2
1

N1

+
s2
2

N2

)2

s4
1

N2

1
V1

+
s4
2

N2

2
V2

where V1 = N1 − 1, V2 = N2 − 1 are based off the number of data Ni in the two data sets being compared.
Our null hypothesis is that the means are equal between data sets. We then compute the p-value of Welch’s
t-test by

p-value = 2P (t > |t0|),

where t is Student’s t distribution with ν degrees of freedom. If the p-value is less than some user-defined
significance level α, we say the test is significant, which means that we reject the null hypothesis (the same
mean) at the level of α. If the p-value is greater than the significance level, we do not reject the null hypothesis.
Here we choose the significant level α = 0.01. In other words, if an AE parameter is determined to be
significant, we think that signifies it is meaningful in differentiating between control and defective composites.

4.2.2 Comparing means

First, for the control group, we took the mean value of each parameter in the 3 blocks. Since we had 20 control
data sets, we got 20 mean values for each block, µC

i . Then we found µC = 1
20

∑20
i=1 µ

C
i and the corresponding

σC , the mean and standard deviation of the 20 control data means. We did the same computation for the
defect 1 and defect 2 groups, obtaining the pairs µD1, σD1 and µD2, σD2. Plug in the formulas for t test, and
then we performed Welch’s t-test for each block between each pairwise combination of control, defect 1 and
defect 2 composites. For example, for the third block between control and defect 1 composites, examining
parameter 5, the p-value for the third block was 7.9 × 10−5, which came from the test statistic t = 4.7747
with ν = 23.303. Since this p-value was less than α = 0.01, we rejected the null hypothesis and believed there
was a difference between means of parameter 5 for the control and defect 1 groups. We concluded that the
parameter was important in differentiating between control and defect 1 parts.

The p-values for Welch’s t-test were computed for all thirteen parameters in each block, comparing the
means of the computed data means between the control and defect 1 groups (Table 5), between the control
and defect 2 groups (Table 6), and between the defect 1 and defect 2 groups (Table 7). At the α = 0.01 level,
Table 5 indicated that parameters 5, 9 and 10 show significant difference between means of block 3 for the
control and defect 1 groups. The mean of parameter 4 in the second block also showed significant differences
between the control and defect 1 groups.

Given the same α level for Table 6, we saw that, again, parameters 5, 9 and 10 showed significant differences
between means of block 3 for the control and defect 2 groups. In addition, the means of parameters 5 and 11
in the first block and the mean of parameter 4 in the second block showed significant differences between the
control and defect 2.

However, using the same α level for Table 7, there were no parameters showing significant differences
between defect 1 and defect 2 in any block. This might indicate that differentiating between defect 1 and
defect 2 would be difficult.

4.2.3 Comparing medians

We used the same method as before, except now we took the median AE values across data sets instead of
the mean. So, we found MedCi for the 20 control data sets. We then compute µC = 1

20

∑20
i=1 MedCi and the

corresponding σC of the median values. This was done for defect 1 and defect 2 data, as before. We then
again computed the t-test for each block between each two of groups the control, defect 1 and defect 2.

The p-values for Welch’s t-test were computed for all thirteen parameters for each block, comparing the
means of the medians between the control and defect 1 groups (Table 8), between the control and defect 2
groups (Table 9), and between the defect 1 and defect 2 groups (Table 10). At the α = 0.01 level, Table 8
indicated that parameters 5, 9, 10 and 12 showed significant differences between medians of block 3 for the
control and defect 1 groups. Given the same α level for Table 9, we saw that, again, parameters 5, 10 and 12
showed significant differences between medians of block 3 for the control and defect 2 groups. In addition, the
medians of parameters 4 and 5 in the first block and the median of parameter 4 in the second block showed
significant difference between the control and defect 2.
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Parameter number Block 1 Block 2 Block 3
1 0.180 0.298 7.6× 10−1

2 0.474 0.330 2.7× 10−1

3 0.066 0.984 7.4× 10−2

4 0.567 0.006 8.2× 10−1

5 0.044 0.230 7.9× 10−5

6 0.682 0.300 1.7× 10−1

7 0.617 0.123 1.2× 10−1

8 0.320 0.582 6.7× 10−1

9 0.904 0.353 4.7× 10−3

10 0.523 0.305 2.1× 10−4

11 0.014 0.212 9.9× 10−1

12 0.461 0.277 2.9× 10−2

13 0.474 0.311 2.8× 10−1

Table 5: The p-value for the t-tests computed of each block between control and defect 1, comparing the
means for each test.

Parameter number Block 1 Block 2 Block 3
1 0.068 0.863 2.7× 10−1

2 0.810 0.660 7.0× 10−1

3 0.025 0.593 1.2× 10−2

4 0.280 0.009 8.0× 10−1

5 1.2× 10−4 0.074 9.7× 10−6

6 0.397 0.347 2.7× 10−1

7 0.036 0.191 2.7× 10−1

8 0.284 0.329 8.7× 10−1

9 0.195 0.227 7.2× 10−3

10 0.605 0.473 1.1× 10−5

11 8.7× 10−4 0.090 7.9× 10−1

12 0.034 0.157 7.2× 10−2

13 0.812 0.650 7.1× 10−1

Table 6: The p-value for the t-tests computed of each block between control and defect 2, comparing the mean
value for each test.
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Parameter number Block 1 Block 2 Block 3
1 0.511 0.156 0.042
2 0.360 0.315 0.014
3 0.513 0.577 0.019
4 0.380 0.877 0.854
5 0.026 0.418 0.030
6 0.203 0.830 0.226
7 0.122 0.660 0.124
8 0.949 0.647 0.114
9 0.157 0.462 0.371
10 0.821 0.829 0.066
11 0.637 0.695 0.207
12 0.208 0.403 0.091
13 0.358 0.314 0.014

Table 7: The p-value for the t-tests computed of each block between defect 1 and defect 2, comparing the
mean value for each test.

Parameter number Block 1 Block 2 Block 3
1 0.961 0.360 7.1× 10−1

2 0.464 0.193 9.0× 10−1

3 0.024 0.842 1.3× 10−1

4 0.020 0.030 2.4× 10−1

5 0.070 0.644 5.7× 10−5

6 0.548 0.384 7.5× 10−1

7 0.074 0.153 6.0× 10−1

8 0.392 0.982 2.7× 10−2

9 0.790 0.313 7.2× 10−3

10 0.798 0.156 7.7× 10−5

11 0.035 0.188 5.2× 10−2

12 0.305 0.267 5.5× 10−4

13 0.446 0.210 6.9× 10−1

Table 8: The p-value for the t-tests computed of each block between control and defect 1, comparing the
medians for each test.

However, using the same α level for Table 10, there were no parameters showing significant differences
between defect 1 and defect 2. This again indicated that determining between defect 1 and defect 2 might
prove difficult.

4.2.4 Comparing maximums

We now used the same methodology, except we took the maximum of the AE data in each of the 20 data
sets for the three types of material. The p-values for Welch’s t-test were computed for all thirteen parameters
for each block, comparing the means of the maximums between the control and defect 1 groups (Table 11),
between the control and defect 2 groups (Table 12), and between the defect 1 and defect 2 groups (Table 13).
At the α = 0.01 level, Table 11 indicated that parameters 2, 3, 4, 5, 11 and 13 show significant differences
between medians of block 3 for the control and defect 1 groups.

Given the same α level for Table 12, we saw that, all but parameter 8 showed significant differences between
medians of block 3 for the control and defect 2 groups. In addition, the medians of parameters 2, 3, 11 and
13 in the first block and the medians of parameter 3, 4, 5, 8, 10 and 11 in the second block showed significant
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Parameter number Block 1 Block 2 Block 3
1 0.635 0.255 9.9× 10−1

2 0.166 0.184 1.0
3 0.051 0.799 2.8× 10−2

4 0.003 4.8× 10−4 1.4× 10−1

5 1.9× 10−4 0.175 9.4× 10−6

6 0.978 0.209 9.5× 10−1

7 0.021 0.129 6.7× 10−1

8 0.432 0.619 7.6× 10−2

9 0.970 0.214 1.1× 10−2

10 0.666 0.527 6.0× 10−7

11 0.013 0.118 1.1× 10−2

12 0.026 0.119 6.7× 10−4

13 0.118 0.140 9.0× 10−1

Table 9: The p-value for the t-tests computed of each block between control and defect 2 comparing the
median values for each test.

Parameter number Block 1 Block 2 Block 3
1 0.577 0.631 0.202
2 0.554 1.000 0.701
3 0.777 0.595 0.051
4 0.599 0.511 0.438
5 0.063 0.299 0.064
6 0.480 0.615 0.454
7 0.349 0.845 0.725
8 0.727 0.488 0.229
9 0.731 0.384 0.504
10 0.458 0.282 0.045
11 0.859 0.474 0.038
12 0.467 0.213 0.747
13 0.435 0.735 0.362

Table 10: The p-value for the t-tests computed of each block between defect 1 and defect 2 comparing the
median values for each test.
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Parameter number Block 1 Block 2 Block 3
1 0.162 0.798 2.0× 10−2

2 0.162 0.823 6.5× 10−4

3 0.083 0.097 3.7× 10−7

4 0.788 0.004 5.5× 10−9

5 0.441 0.012 5.8× 10−9

6 0.244 0.548 9.8× 10−2

7 0.317 0.746 1.8× 10−2

8 0.416 0.111 1.6× 10−1

9 0.186 0.509 1.3× 10−1

10 0.861 0.013 2.4× 10−12

11 0.158 0.003 5.6× 10−5

12 0.227 0.509 9.1× 10−2

13 0.163 0.823 6.5× 10−4

Table 11: The p-value for the t-tests computed of each block between control and defect 1, comparing the
maximum value for each test.

Parameter number Block 1 Block 2 Block 3
1 1.2× 10−2 2.2× 10−1 1.7× 10−3

2 8.8× 10−3 9.2× 10−2 1.7× 10−6

3 1.6× 10−6 1.4× 10−4 6.4× 10−9

4 2.1× 10−2 1.1× 10−5 3.6× 10−9

5 1.7× 10−2 1.6× 10−6 2.8× 10−15

6 1.2× 10−1 8.0× 10−2 6.3× 10−4

7 1.3× 10−1 7.6× 10−2 2.3× 10−5

8 8.3× 10−2 5.4× 10−3 4.2× 10−2

9 1.6× 10−1 3.6× 10−1 1.7× 10−3

10 1.8× 10−3 2.5× 10−8 5.1× 10−17

11 2.6× 10−5 5.4× 10−6 7.9× 10−9

12 3.4× 10−2 7.1× 10−2 1.8× 10−4

13 8.8× 10−3 9.2× 10−2 1.7× 10−6

Table 12: The p-value for the t-tests computed of each block between control and defect 2 comparing the
maximum value for each test.

differences between the control and defect 2 groups.
However, using the same α level for Table 13, only parameters 7 and 12 showed significant differences

between defect 1 and defect 2 in the third block; only parameter 3 showed significant differences between
defect 1 and defect 2 in the first block. This might indicate that some parameters could differentiate between
defective parts.

4.3 Significance tests on combined data

Instead of taking the means/medians/maximums of the acoustic parameters in the 60 data sets individually,
we would examine if anything changed when we first combined all the AE data of the 20 tests as one test for
the control group, defect 1 group, and defect 2 group individually and then comparing the AE parameters
using the t-test between the three groups. We used the combined data as described in Sec. 3.2 and computed
Welch’s t-test. The p-values for Welch’s t-test were computed for all thirteen parameters for each block,
between the control and defect 1 groups (Table 14), between the defect 1 and defect 2 groups (Table 15) and
between the control and defect 2 groups (Table 16).
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Parameter number Block 1 Block 2 Block 3
1 0.738 0.206 0.183
2 0.872 0.095 0.028
3 0.001 0.029 0.011
4 0.003 0.219 0.162
5 0.149 0.345 0.206
6 0.999 0.180 0.001
7 0.665 0.083 0.001
8 0.162 0.166 0.389
9 0.651 0.975 0.008
10 0.002 0.101 0.007
11 0.003 0.004 0.018
12 0.415 0.282 0.000
13 0.869 0.094 0.028

Table 13: The p-value for the t-tests computed of each block between defect 1 and defect 2 comparing the
maximum value for each test.

Parameter number Block 1 Block 2 Block 3
1 1.9× 10−1 0.290 6.1× 10−1

2 4.7× 10−1 0.298 5.8× 10−3

3 8.6× 10−2 0.409 1.6× 10−1

4 1.6× 10−1 0.006 5.7× 10−1

5 4.1× 10−5 0.000 9.5× 10−25

6 8.1× 10−1 0.217 9.8× 10−5

7 4.4× 10−1 0.096 3.6× 10−6

8 6.0× 10−1 0.976 8.6× 10−2

9 9.3× 10−1 0.171 1.2× 10−5

10 9.6× 10−2 0.100 5.3× 10−14

11 5.1× 10−3 0.134 6.7× 10−1

12 7.3× 10−1 0.153 8.6× 10−4

13 4.7× 10−1 0.293 5.9× 10−3

Table 14: The p-value for the t-tests computed of each block between control and defect 1 comparing the
means for the combined data of all tests.

At the α = 0.01 level, Table 14 indicated that parameters 2, 5, 6, 7, 9, 10, 12 and 13 showed significant
differences between data of block 3 for the control and defect 1 groups. In addition, parameters 5 and 11 in
the first block and parameter 4 and 5 in the second block showed significant differences between the control
and defect 1 groups.

Given the same α level for Table 15, we saw that, parameters 3, 5, 6, 7, 9, 10 and 12 showed significant
differences between data of block 3 for the control and defect 2 groups. In addition, parameters 3,4,5,7 and
11 in the first block and parameter 4, 5 and 11 in the second block showed significant differences between the
control and defect 2.

Using the same α level for Table 16, we saw that, parameters 2, 3, 5, 6, 7, 10, 11, 12, and 13 showed
significant differences between data of block 3 for the defect 1 and defect 2 groups. In addition, parameters
5 in the first block and parameter 5 and 10 in the second block showed significant differences between the
defective groups.
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Parameter number Block 1 Block 2 Block 3
1 3.6× 10−2 8.4× 10−1 5.6× 10−1

2 8.4× 10−1 8.0× 10−1 5.7× 10−2

3 3.3× 10−3 1.7× 10−2 4.2× 10−3

4 8.4× 10−3 8.2× 10−3 6.0× 10−1

5 8.4× 10−20 1.9× 10−16 34.0× 10−34

6 2.2× 10−1 3.7× 10−1 4.0× 10−4

7 9.5× 10−3 2.7× 10−1 7.4× 10−5

8 8.4× 10−1 7.8× 10−1 2.1× 10−1

9 1.6× 10−1 1.5× 10−1 1.8× 10−5

10 3.2× 10−2 3.0× 10−1 7.5× 10−23

11 3.0× 10−4 3.2× 10−3 9.3× 10−1

12 6.1× 10−2 2.0× 10−1 3.3× 10−3

13 8.5× 10−1 7.9× 10−1 5.9× 10−2

Table 15: P-value of t-test for combination data between control and defect 2

Parameter number Block 1 Block 2 Block 3
1 5.2× 10−1 7.9× 10−2 1.5× 10−2

2 3.9× 10−1 4.8× 10−2 7.7× 10−8

3 3.3× 10−1 1.4× 10−2 4.1× 1012

4 2.1× 10−1 5.3× 10−1 8.1× 10−1

5 3.1× 10−6 9.2× 1010 3.6× 1018

6 2.2× 10−1 3.7× 10−1 2.2× 10−3

7 9.6× 10−2 1.4× 10−1 2.8× 10−7

8 3.3× 10−1 5.8× 10−1 2.1× 10−2

9 3.1× 10−1 9.5× 10−1 2.2× 10−1

10 8.8× 10−1 3.4× 10−5 1.0× 1027

11 9.5× 10−1 4.8× 10−2 1.8× 10−3

12 2.7× 10−1 6.3× 10−1 4.1× 10−6

13 3.9× 10−1 4.7× 10−2 6.9× 10−8

Table 16: P-value of t-test for combination data between defect 1 and defect 2
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4.3.1 Summary of significance testing

Given all the results we get from the significance tests, we can clearly see that parameters 5, 9, and 10 show
significant differences in all the tests based on different statistics. Parameters 2, 3, 6, 7, and 12 showed
significance in most of the tests. Thus, from significance testing the recommended parameter set would be
parameters 2, 3, 5, 6, 7, 9, 10, and 12.

4.4 Principal component analysis (PCA)

Principal component analysis (PCA) is a mathematical procedure that computes the orthogonal components
of a data set in which the majority of the variability of the data lie [21]. As previously discussed, it can be
inefficient to use all variables to analyze the data, especially when variables are largely correlated to each
other. PCA considers the set of observations with possibly correlated variables and returns a set of values of
linearly uncorrelated variables called principal components.

A benefit of PCA is that the number of principal components returned is less than or equal to the original
number of variables. The principal components are organized by PCA such that the first principal component
accounts for as much of the variability in the original variables as possible, with each successive component
accounting for as much variability as possible with the requirement that it be orthogonal to the previously
defined principal components.

Analysis with PCA can be performed using Matlab’s princomp function. This function requires the data
matrix, X , as input with each column representing a variable and each row an observation. To reduce the
variation between variables, it is recommended to first standardize the data matrix with the command zscore.

The essence of computing the principal components consists of centering the data matrix, such that X̃ =
X − X̄ (where X̄ is the mean of the data matrix). The eigen-decomposition of X̃ ′X̃ = V D2V ′ is computed,
where V is the matrix of principal components and D2 is a diagonal matrix of the eigenvalues of X̃ ′X̃ [8].
Moreover the columns of V , denoted as vi, are the eigenvectors of X̃ ′X̃ .

The first principal component v1 is used to calculate z1 = X̃v1, a vector that contains the largest variance of
all the normalized linear combinations of the columns of X̃. The eigenvalues corresponding to each principal
component describe how much variation in the data that particular component describes. The principal
components indicate how much of each variable is contributing to the variation in each orthogonal direction.

PCA was performed on the first test of each group using all three blocks. The first four eigenvalues for
the control group are d1 = 0.520, d2 = 0.171, d3 = 0.112, and d4 = 0.081. Adding these four eigenvalues
indicates that the first four principal components describe 88.4% of the variation in the control data set.
The corresponding principal components for test 1 of the control are in Table 17. To calculate the role of
importance of each parameter, we multiply the eigenvalue times the absolute value of the eigenvector and sum
across the first four components. We find the original variables 4, 8, 10, and 11 play the least important roles
in the data sets. This is repeated for each of the remaining 19 control tests.

The same process was repeated for the defect 1 data, test one. The first four eigenvalues, d1 = 0.416,
d2 = 0.152, d3 = 0.115, and d4 = 0.102 indicate that 79.5% of the variation in this data set is captured by
the first four components given in Table 18. Computing the importance of the parameters as above, we found
the same result that the original variables 4, 8, 10, and 11 play the least important role in the data sets. This
result was confirmed across all 20 tests of the defect 1 data.

The same process was repeated for the defect 2 data, test one. The first four eigenvalues, d1 = 0.452,
d2 = 0.130, d3 = 0.111, and d4 = 0.100 indicate that 79.3% of the variation in this data set is captured by the
first four components given in Table 19. Computing the importance of the parameters as above, we found the
a nearly same result as before that the original variables 4, 8, and 11 play the least important role in the data
sets. This result was confirmed across all 20 tests of the defect 1 data.

The common least important parameters between the three groups of acoustic emissions are parameters 4,
8, and 11. Therefore, based on PCA, we determined that the following nine parameters contribute the most
information towards the variation in the original AE data sets: 1, 2, 3, 5, 6, 7, 9, 12, and 13.

4.5 Generalized Linear Model (GLM)

Linear regression is a very common technique in statistics that is used to relate independent variables to some
response. In our case, however, the “response” we wish to examine is categorical, namely whether the part is
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Parameter 1st component 2nd component 3rd component 4th component
1 0.365 0.067 -0.181 0.028
2 0.368 -0.165 -0.059 0.007
3 0.335 0.238 -0.051 0.157
4 0.211 0.434 0.061 0.226
5 -0.023 0.462 0.228 0.111
6 0.359 0.148 -0.203 0.043
7 0.302 -0.376 0.133 0.024
8 -0.154 0.052 -0.630 -0.104
9 0.356 0.164 -0.168 -0.074
10 -0.080 -0.149 0.143 0.876
11 0.057 0.355 0.509 -0.297
12 0.238 -0.381 0.373 -0.189
13 0.371 -0.152 -0.038 0.024

Table 17: The first four principal components (eigenvectors) for test one of the control group using all three
blocks.

Parameter 1st component 2nd component 3rd component 4th component
1 0.232 0.488 0.027 -0.087
2 0.368 0.35 0.027 -0.054
3 0.375 -0.155 -0.048 0.189
4 0.023 -0.015 0.387 0.551
5 -0.249 0.214 0.458 -0.222
6 0.408 -0.017 0.074 0.038
7 0.406 -0.019 0.001 -0.0490
8 -0.148 0.342 0.220 0.015
9 0.233 -0.374 0.287 -0.302
10 -0.0818 0.075 0.619 -0.006
11 0.159 -0.231 0.214 0.527
12 0.181 -0.357 0.266 -0.474
13 0.368 0.351 0.026 -0.054

Table 18: The first four principal components (eigenvectors) for test one of the defect 1 group using all three
blocks.
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Parameter 1st component 2nd component 3rd component 4th component
1 0.286 0.414 -0.092 0.040
2 0.374 0.245 0.014 0.196
3 0.345 -0.259 0.183 0.113
4 0.019 -0.003 0.605 -0.116
5 -0.229 0.480 0.146 -0.196
6 0.388 -0.034 0.141 0.091
7 0.392 0.006 0.013 0.112
8 -0.138 0.437 0.174 0.296
9 0.268 0.024 -0.111 -0.532
10 -0.071 0.297 0.460 -0.278
11 0.140 -0.332 0.463 -0.195
12 0.217 0.145 -0.287 -0.591
13 0.374 0.243 0.013 0.195

Table 19: The first four principal components (eigenvectors) for test one of the defect 2 group using all three
blocks.

defective or control. Linear regression can be modified to incorporate such binary data using the generalized
linear model framework in [12].

4.5.1 Method description

To make a model, our response data is control or defect, which is binary. We can consider that it is chosen
from a Bernoulli distribution instead of a Normal distribution. Here we assume that Y is a random variable
with a Bernoulli density, which is defined by

p(Y = 1) = p; p(Y = 0) = 1− p; p ∈ (0, 1), (8)

where Y = 0 represents the control group, and Y = 1 represents the defect group. The value of p is related to
determining the particular class for a data set. If p < 0.5, the data point in question would be classified as a
control group; for p > 0.5, the data would be classified as defective.

With this framework, we develop a Generalized Linear Model (GLM) [7]. In order to link the usual linear
regression [11] model Y = Xβ (where Y is assumed to follow a normal distribution) to a binary model like
ours, we require a link function. The standard link function used in the binary classification model is the logit
link

g(p) = ln
( p

1− p

)

, (9)

which transforms p from (0, 1) to (−∞,+∞). We then assume g(p) = Xβ, linking the normally distributed
variable on the right hand side with the Bernoulli-distributed variable on the left hand side. Inverting the
relationship, we can form the generalized linear model and find p by

E(Y) = p = g−1(Xβ). (10)

Since Y is distributed as a Bernoulli random variable (taking on values of either 0 or 1), we can easily write
down the log likelihood

l(β) =

n
∑

i=1

[yi log(Xiβ) + (1 − yi) log(1 −Xiβ)]. (11)

We obtained the vector parameter β by using Maximum Likelihood Estimation.
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Coefficients Estimation Std. Error z value P value
β0 −2.745 2.364× 10−1 -11.610 < 10−15

β1 −5.913× 10−6 3.943× 10−7 −14.996 < 10−15

β2 9.545× 10−3 3.538× 10−2 0.270 0.787
β3 1.551× 10−1 4.489× 10−3 34.554 < 10−15

β4 −2.317× 10−4 1.107× 10−4 −2.093 0.036
β5 −9.292× 10−3 2.436× 10−4 −38.146 < 10−15

β6 −1.222× 10−2 1.078× 10−3 −11.336 < 10−15

β7 −2.763× 10−3 8.021× 10−5 −34.450 < 10−15

β8 7.609× 10−4 3.982× 10−5 19.108 < 10−15

β9 −4.809× 10−2 2.161× 10−3 −22.249 < 10−15

β10 −2.188× 10−3 1.898× 10−4 −11.526 < 10−16

β11 −5.533× 10−4 1.444× 10−4 −3.833 0.0001
β12 4.362× 10−3 1.640× 10−4 26.601 < 10−16

β13 8.629× 10−6 5.664× 10−6 1.523 0.127

Table 20: GLM results for the model with respect to all parameters

4.5.2 GLM parameter significance determination

First, we tried the GLM for all the data for control and defect 1 using all the parameters. The model is

E(Y) = p = g−1(β0 +

13
∑

i=1

Xiβi). (12)

Since the number of data for control is too small to do the GLM, we randomly sampled the control data
multiple times to obtain a data set with numbers of AE events on a similar level as the number of AE events
for defect 1.

The GLM results were showing at Table 20. The Estimation column gave the values obtained for each
coefficient βi. The Std. Error was the standard error of the estimated values. These values were not necessarily
our main objective; we wished to determine which values were significant in matching the data.

To check which parameter was significant in this GLM, we assumed each coefficient had a normal density.
The null hypothesis for each component was that the component was 0. We then ran a significance test to see
if the coefficient should be nonzero. The z statistic was found by normalizing the coefficients

z0 =
Estimate

Std.Error
, (13)

and the p-value is calculated by
p-value = p(z > |z0|), (14)

where z had a standard normal distribution. We again chose the significance value α = 0.01. When the
p-value < 0.01, we rejected the null hypothesis, which means we thought that the coefficient was significantly
different from 0. Based on Table 20, we can see that the parameters 1, 3, 5, 6, 7, 8, 9, 10, 11, and 12 are
significantly different from 0.

Parameter subsets can also be found through model comparison tests, like the Akaike Information Criterion
(AIC) [1, 2]. The results for significant parameters were similar to those obtained using the comparison test
previously described, so we did not include results here. However, using AIC (or other performance criterion)
could be important if one wishes to examine further parameter classification methods.

4.5.3 Testing the GLM model

Using the significant parameters, we tested to see if parts were being properly classified. The example here
would be using the defect 2 data sets. We used the model for each data set, finding the predicted p-value for
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0.6061306 0.5879914 0.5621036 0.6230668 0.5694919
0.5919222 0.6137649 0.5783133 0.6160086 0.5962945
0.5704178 0.5925726 0.6257801 0.5978169 0.6185930
0.5872174 0.5794906 0.6026244 0.5756116 0.5544666

Table 21: The mean of prediction value of p of each test for defect 2 group using the GLM with respect to all
parameters.

each data set. Based on (8), p > 0.5 means the group was more likely to be defective, otherwise the composite
was more likely to be a control composite. We calculate the mean of the p for each test of defect 2 groups
shown in Table 21. The means in Table 21 were all greater than 0.5, which meant the part were more likely
to be classified as defective. In addition, Figure 4.5.3 showed the density plot of the p in test 34233. We
could see that most of the data (2147/3154 = 68%), which would predict that the part is defective with high
probability.

4.6 Additional Parameter Selection Methods

We also tried Factor Analysis [15], which is somewhat similar to PCA, and Bayes-based data analysis [6].
Factor Analysis resulted in a parameter subset similar to those we have already found, and Bayes-based data
analysis was unsuccessful on our data set. Given time constraints, we have chosen to include no further
information on these tests.

4.7 Selecting the final parameter sets

To summarize, the parameters selected by the various methods are found in Table 22. In addition, without
revealing the physical meaning behind the thirteen parameters, it has been determined that parameters 1 and
6 have an essential physical meaning to the analysis. Recall that parameters 1, 2, and 13 have been found
to be correlated, as well as the sets {3, 6, 7} and {9, 12}. Taking the correlation into account and choosing
the correlated parameters with least variance, the common parameters observed between all the methods
are θ1 = {2, 3, 5, 8, 10}. We will refer to this set of five parameters as our core set of parameters. Based on
additional information provided by the project sponsor, we also felt it may be beneficial in prediction modeling
to keep a few of the other parameters in the final parameter set based on this physical knowledge, so we choose
to also use the set θ2 = {2, 3, 4, 5, 8, 9, 10, 11}. Further modeling will use both sets in comparison.

Method Parameter Set
Correlation Coefficients {2, 3, 4, 5, 8, 9, 10, 11}
t-test {1, 2, 3, 5, 6, 9, 10, 12}
PCA {1, 2, 3, 5, 6, 7, 9, 10, 12, 13}
GLM {1, 3, 5, 6, 7, 8, 9, 10, 12}

Table 22: Summary of the various approaches to parameter reduction. The parameter set in this table is the
set of parameters suggested by each particular method to use in prediction modeling.
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5 Classification: Discriminating Between Controls and Defects

The problem of classification seeks to segment a given data set into classes, or groups. Classification techniques
are used on a wide range of scientific problems. For example, classification is used in spam detection systems
for email and for patient diagnosis in medicine [8]. Furthermore, classification is used in image processing
when ecologists wish to classify aerial images in order to determine how landscapes change over time [16],
and the U.S. Post Office uses classification techniques for handwriting recognition [8]. Without an underlying
mathematical model, we turn to classification techniques in order to predict if data comes from control or
defective groups.

Supervised classification methods require a priori knowledge about the data set, i.e., the user must provide
the set of classes in the image, as well as a training field for each class. The set of training fields is the training
data. For the acoustic emissions data, the training data would be akin to an acoustic emission vector of
parameter emission data with its corresponding group: control, defect 1 or defect 2. A classifier is built from
the training data, which is then applied to the test set. The test set is the set of remaining data for which the
corresponding class is unknown.

Typically in classification, a vector of data corresponds directly to a group. For example, in image process-
ing, a single pixel vector corresponds to a particular group (grass, field, trees, water, etc.) while in medical
diagnosis, each data set of medical observations corresponds to a single patient. In the case of the acoustic
emissions, we have multiple (up to thousands of) observations for each parameter within a classification group.
Here, we will classify each vector of emissions as corresponding to a single composite. After classification of
all the observations for a single test, we take the mode of the individual classifications for a final classification
on the composite material tested.

We use linear and quadratic discriminant analysis, Mahalanobis distance and k-nearest neighbor classifiers
for the AE data set, which are explained below. Results of these classifiers follow the descriptions of the
methods.

5.1 Linear Discriminant Analysis

The reasonably robust linear discriminant analysis (LDA) classifier requires a Gaussian assumption on the
data. Even when this assumption does not hold true for the data, oftentimes the desired result can still be
achieved [10]. The derivation for the LDA classifier follows from the work set forth in [8, 16, 10], where further
information on these classifiers can also be found.

Let ωi represent the ith of the n classes. When considering to which class a given data vector x belongs,
we denote the conditional probability of x belonging to ωi by p(ωi|x), for i = 1, . . . , n.. We are interested in
the class that attains the greatest probability given data x. Thus classification will yield x ∈ ωi when

p(ωi|x) > p(ωj|x) for all j 6=i. (15)

We define the probability that a data vector x belongs to a given class ωi by p(x|ωi) and use Bayes’
theorem to relate the two conditional probabilities:

p(ωi|x) =
p(x|ωi)p(ωi)

p(x)
, (16)

with p(ωi) the probability the ith class occurs in the data and p(x) the probability of finding a data vector
from any of the classes at the location x. In Bayes’ terminology, p(ωi) is referred to as the prior probability
and is used to model a priori knowledge.

Substituting (16) into (15) the method will classify x as an element of class ωi when

p(x|ωi)p(ωi) > p(x|ωj)p(ωj) for all j 6=i. (17)

The probability p(x|ωi) can be determined using training data supplied by the analyst, while p(ωi) is
determined using prior knowledge of the data. Here we assume a particular vector x has the same probability
of being classified into any of the classes. However, if we have reason to believe that a data vector is more
likely to be in one class than another (i.e. more likely to be a control than a defect), then different priors
can be assigned. To simplify the above equation, we use the discriminant functions gi (x) defined to be the
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Figure 9: A contrived training set used to classify R
2 in order to visually demonstrate the behavior of LDA.

Three arbitrary classes are represented by the colors red, green and blue. Training data appear as circles while
test data appear as ‘x’ marks.

natural logarithm of the left hand side of (17) for any i, which preserves the inequality since the logarithm is
a monotone, increasing function:

gi (x) = ln p(x|ωi) + ln p(ωi). (18)

For simplification, we assume the probability distributions for the classes are multivariate normal, though
this is not necessarily verifiable. We make this assumption since the properties of the multivariate normal
are well-known, In practice, [10] states that classes are not generally normally distributed even though it is
assumed so, nor are the class means and data covariances known, though they can be calculated using training
data.

For the LDA classifier, it is assumed that the covariance matrices between classes, Σi, are equal, i.e. Σi = Σ
for all i. Thus we have

p(x|ωi) =
1

√

(2π)N |Σ|
e−

1

2
(x−mi)

′Σ−1(x−mi), (19)

where N is the dimension of data vector x, mi is the mean vector of data in class ωi and Σ is the covariance
matrix of all the data. Then the discriminant function has the form

gi (x) = −
N

2
ln 2π −

1

2
ln |Σ| −

1

2
(x−mi)

′Σ−1(x−mi) + ln p(ωi). (20)

Finally, we can simplify (20) by removing terms that are independent of i. Recall also the assumption that
ln p(ωi) is equal for all i, and thus can be removed. Moreover, we equivalently use the discriminant function

gi (x) = m
′

iΣ
−1(x−

1

2
mi). (21)

Thus linear discriminant analysis classifies x as an element of ωi when

gi(x) > gj(x) for all j 6=i, (22)

for the discriminant function given in (21).
For a visual example of the LDA classifier, a contrived training set was created in R

2 with three groups
(not actual control/defect data). Figure 9 shows the training set (red, green, and blue circles), along with the
classification of R2 (red, green and blue ‘x’ marks). Note that the LDA creates linear boundaries.
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Figure 10: A contrived training set used to classify R
2 in order to visually demonstrate the behavior of QDA.

Three arbitrary classes are represented by the colors red, green and blue. Training data appear as circles while
testing data appear as ‘x’ marks.

5.2 Quadratic Discriminant Analysis

Quadratic discriminant analysis (QDA) is a simple method and popular amongst classifiers for its simplicity
and compact training process [14]. This method also assumes a multivariate Gaussian model on the data,
however the class covariances are not assumed to be equal. QDA uses the discriminant function

gi (x) = − ln |Σi| − (x−mi)
′Σ−1

i (x−mi) (23)

to determine classification of the data x using (22).
A visual example of the QDA classifier is given in Figure 10 for the same contrived data set shown above

under LDA. Notice that the difference between Figures 9 and 10 lies within the boundaries created by the
classifiers. QDA has quadratic boundaries that allow for nonlinear separation within the data set parameter
space, but in this example, misclassifies one of the training data points.

5.3 Mahalanobis Distance

Let us again reconsider the discriminant function in (20). As with LDA, we assume equal covariances across
classes and examine only the third term because the other terms are identical on both sides of the discrim-
inant inequality in (22). By reversing the sign, we can regard this equation as a distance squared measure.
Classification is now based on (22) where

gi(x) = −
√

(x−mi)′Σ−1(x−mi). (24)

Just as with LDA and QDA, we provide a visual example of the Mahalanobis classifier on the example
from above. Figure 11 shows the same training set (red, green, and blue circles), along with the Mahalanobis
distance classification of R2 (red, green and blue ‘x’ marks). Note that Mahalanobis distance classifier is very
similar to the QDA classification in this example, but upon close inspection, the classification of R2 is not the
same. Notice for this example, just as with QDA, there is a training data point misclassified by this method.

5.4 k-Nearest Neighbor

The k-Nearest Neighbor (kNN) procedure is a relatively simple method used to classify data sets [8], and can
be used with categorical classifications like our data set. The kNN procedure is premised upon the existence of
a training set composed of data points and their classifications, and thus is a type of memory-based classifier.
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Figure 11: A contrived training set used to classify R
2 in order to visually demonstrate the behavior of the

Mahalanobis distance classifier. Three arbitrary classes are represented by the colors red, green and blue.
Training data appear as circles while test data appear as ‘x’ marks.

In order to classify a new unclassified data point, the algorithm compares the distance between the new data
point and the k nearest points in the training data set, referred to as neighbors. The new point is classified
based on some criterion, usually the class that the most nearest neighbors are in, with a procedure for tie-
breaking. Larger values of k incorporate more neighbors into the classification, reducing the impact of noise,
but can then make it more likely that neighbors of a test point will lie in multiple classes making decisions
more difficult. In the special case of k = 1, the algorithm simply classifies a new point as being in the same
category as its single nearest neighbor; this is also known as the Voronoi tessellation of the training data.

The procedure does not make any assumptions about the underlying data structure, other than the hoped-
for separation of the data into clusters. The downside is a relatively large computational cost to evaluate the
classification of a new point, as computing distance to training points is costly particularly as the number of
data parameters rises.

Short intuitive kNN example on Fisher iris data

We will use the Fisher iris data [5] to visually demonstrate the performance of the k-Nearest Neighbor method.
This data set is based on data collected in the 1930’s on various properties of iris flowers; here we use only
two properties, petal length and petal width. In Matlab, this data is stored internally and loaded by using the
command load fisheriris. The example shown here is based heavily off the Matlab manual page “Examine
the Quality of a KNN Classifier.” In Figure 12, we show a visual representation of the data.

For demonstration purposes, we will determine the class of a new test flower which has petal length 5, and
petal width 1.45. Using the Matlab routine knnsearch, we find the ten nearest neighbors to our test point
(exhaustive search using Euclidean distance, for this test case); the results of this process are shown in Figure
13, where the test point is near the middle of the figure and marked with an ‘x’. Note that if we used the
nearest neighbor (represented by the point marked by a diamond just above the test point), the test point
would be classified as a virginica iris plant. However, if we expand and use the ten nearest neighbors (shown
by points covered with circles), the majority of these points are classified as versicolor which would result in
a classification of our test point as a versicolor plant.Thus, we see that increasing the k value results in a
different classification.

This points out an inherent issue with the kNN classifier, namely the necessity of a proper choice for k.
This is not known beforehand, and so one hopes that classifying test data will lead to determining an adequate
value for k for a particular application. In this example, we can see that values for k between 5 and 10 would
all classify the test flower as versicolor, meaning we would see some robustness in the classifier with respect
to k. As we will later see, this is not the case for our AE data.
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Figure 12: Fisher iris data. Three types of flowers are represented graphically, and their petal length and
petal width are used to mark each flower data point.
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Figure 13: Fisher iris data, zoomed near test point (5,1.45) which is marked with an ‘x’. The nearest neighbor
is represented by the point marked by a grey triangle, and the next 9 nearest neighbors are shown as the
points with grey circles around them.
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Error rate
Method θ1 θ2
LDA 0.6667 0.6667
QDA 0.6667 0.5667

Mahalanobis 0.4000 0.4000

Table 23: Error rate for the full AE data set as classified into three groups (control, defect 1 or defect 2) in
Matlab using the command classify under LDA, QDA, and Mahalanobis classifiers. All three blocks were
used. The parameter sets used for prediction were θ1 = {2, 3, 5, 9, 10} and θ2 = {2, 3, 4, 5, 8, 9, 10, 11}.

Error rate
Method θ1 θ2
LDA 0.3000 0.3667
QDA 0.6667 0.6667

Mahalanobis 0.3667 0.4333

Table 24: Error rate for the third block of the AE data set as classified into three groups (control, defect 1
and defect 2) in Matlab using the command classify under LDA, QDA, and Mahalanobis classifiers. The
parameter sets used for prediction were θ1 = {2, 3, 5, 9, 10} and θ2 = {2, 3, 4, 5, 8, 9, 10, 11}.

5.5 Classifier method results on AE parameter data

We now turn to the results of our classifier methods. Due to time constraints, unless otherwise specified, the
training data set was composed of the first ten data sets in each of the control, defect 1, and defect 2 groups.
The testing data sets were the remaining ten of each group. Recall that we are examining the AE data from
both of the parameter sets θ1 = {2, 3, 5, 8, 10} and θ2 = {2, 3, 4, 5, 8, 9, 10, 11} previously selected in Section
4.7. In general, each AE signal was classified separately, and then the mode was taken for each AE signal
classification corresponding with the control, defect 1, or defect 2 data set being classified.

5.5.1 Results: LDA, QDA, Mahalanobis

LDA, QDA and Mahalanobis classifiers were applied to the acoustic emissions data set using the Matlab
command classify. This command requires the training set with group labels and the test set as inputs,
while returning the classification for each entry in the test set.

The classifier was applied to the full set of data (all three blocks together), as well as just the third block.
We discussed above the merit of using fewer than the thirteen parameters supplied in the data set. The
correlation coefficients reduced the parameter set to θ2 = {2, 3, 4, 5, 8, 9, 10, 11}. When combined with the
other methods discussed above, we chose the core set of parameters to be θ1 = {2, 3, 5, 9, 10}. Both will be
used in the analysis.

To determine an error rate post-classification, we took the error as the proportion of observations misclas-
sified by the classifier against the truth. For example, of the thirty training composites, if two controls were
misclassified as defect 1 and three defect 1 composites were misclassified as defect 2, with the remaining tests
all classified correctly, the error rate would be equal to 5/30, or 0.16667. Results are given in Table 23 for
classification under LDA, QDA and Mahalanobis distance, using all three blocks of data and both parameter
sets selected in Section 4.7.

These are high error rates, thus we hypothesized that the third block of AE may be the most important
regarding predictive power. We then applied the classifiers to the third block on its own. Results are given in
Table 24, though it is clear that this was not necessarily a large improvement over the error rate when using
all three blocks together.

Furthermore, when looking at the classification for the three groups, it was noticed that the control group
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Error rate
Method θ1 θ2
LDA 0.0667 0.0667
QDA 0.6667 0.6667

Mahalanobis 0.2333 0.0333

Table 25: Error rate for the full AE data set as classified into two groups (control or defect) in Matlab using the
command classify under LDA, QDA, and Mahalanobis classifiers. The parameter sets used for prediction
were θ1 = {2, 3, 5, 9, 10} and θ2 = {2, 3, 4, 5, 8, 9, 10, 11}.

Error rate
Method θ1 θ2
LDA 0.0333 0.1000
QDA 0.3333 0.0667

Mahalanobis 0.0667 0.0333

Table 26: Error rate for the third block of the AE data set as classified into two groups (control or defect)
in Matlab using the command classify under LDA, QDA, and Mahalanobis classifiers. The parameter sets
used for prediction were θ1 = {2, 3, 5, 9, 10} and θ2 = {2, 3, 4, 5, 8, 9, 10, 11}.

was generally classified accurately but the classifier had difficulty differentiating between the two defect groups.
By combining the defects into a single group and classifying whether a composite is a control or defect, the
results generally showed error rate improvement, regardless of the data set used (full or third block only).
Results for the combined defect groups are found in Tables 25 and 26 for both parameter sets and both data
sets.

In the results for the combined defect groups, we notice that all three methods can perform well depending
on the parameter/data set combination. QDA performs the poorest overall. The Mahalanobis distance
returns the lowest misclassification rate of 0.0333 when using the parameter set garnered from the correlation
coefficients regardless of the data set. LDA can match this error rate when the core parameter set, θ1, is used
to classify the composites into either the control or defect group. The only composites misclassified in the
tests in Tables 25 and 26 are control composites; defects are not being classified as controls. In practice, it is
safer to misclassify a control as a defect, rather than vice versa.

5.5.2 Results: k-Nearest Neighbor

In order to apply kNN to the acoustic emission data set, we split the data set into training and testing sets.
Only the data in block 3 was used in the training and testing data sets, since block 3 data contains the most
information. The training set was the first 10 data sets for each of the control, defect 1, and defect 2 data;
testing sets were the remaining data, for a total of thirty each of training and test data sets. Each entry in
the training set was tagged with its class, 0 for control, 1 for defect 1, and 2 for defect 2. We utilized the
ClassificationKNN structure that was implemented in the most recent Matlab version 7.14. This class takes
the training data and corresponding labels as input, has a predict subroutine that takes in new data and
computes the kNN results using a specified distance metric and k value. By default, the distance metric is
the standard Euclidean distance and k = 1. These are both parameters that can be dynamically changed in
the classification structure. The parameters used here are the core set, θ1 = {2, 3, 5, 9, 10}, as well as the set
obtained just by eliminating correlated variables, θ2 = {2, 3, 4, 5, 8, 9, 10, 11}. The Euclidean distance for two
general vectors ~p, ~q, of equal length n is then defined by

d(~p, ~q) =
√

(~q − ~p)T (~q − ~p).
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Recall that the Mahalanobis distance is similar to the Euclidean distance, but takes into account correla-
tions between parameters by incorporating the covariance matrix Σ = Cov(~p, ~q), and is defined by

d(~p, ~q) =
√

(~q − ~p)TΣ−1(~q − ~p).

Since Mahalanobis was known to be somewhat successful in the discriminant analysis tests, we again will
try Mahalanobis along with Euclidean distance metrics when building the kNN classifier. By default Matlab
uses the covariance matrix as previously defined. If additional information arose which indicated particular
AE parameters were relatively more or less important, Matlab does allow for the specification of a different
weight matrix.

The testing procedure involved classifying each acoustic emission individually for a particular test data set.
Once each data point for that set was classified, the classification with a plurality (i.e., the mode of the AE
classifications) was assigned to the entire test. This mimics our other classification procedures, and is again
logical as a procedure since the data for each test are connected and thus must be considered as a group for
classification purposes.

Put simply, kNN using AE parameters to delineate between control, defect 1, and defect 2 was unsuccessful.
In most instances, all of the test data sets were classified as defect 2. This occurred for k = 1, 2, 3, and 4.
Similarly, we tried using only two classes, control and defect. Even when combining the defect types together
into a single category and attempting to classify control versus defect, the kNN method classified all test sets
as defective.

This poor performance may be due to the fact that the number of acoustic emissions are quite small for
the control parts, a moderate amount for defect 1, and a large number for defect 2. In fact, on average defect
2 composites give off nearly twice as many acoustic emissions as defect 1 and two orders of magnitude more
than the control group. Since the kNN procedure compares the individual acoustic emissions in each of the
test data sets, it is conceivable that each point may be nearer a defective trial point than a control trial
point; similarly, being near a defect 2 point is twice as likely as a defect 1 point given the larger number of
defect 2 acoustic emissions in the training set. By classifying each AE event as a separate point, we seem
to lose information that ties groups of acoustic emissions from the control sets to each other. Perhaps other
classification methods could be implemented, but for our current purposes we consider the kNN methodology
on acoustic emission parameters to be unsuccessful.

5.5.3 Summary of results on AE parameter-based classification

In general, using LDA, QDA, and MD, we were able to differentiate between control and defective composites.
Determining the difference between defect 1 composites and defect 2 composites has proved elusive. The
results here should provide a good starting point for further study on classification using AE parameters.

5.6 Classifier method results using the number of emissions

The number of total emissions from the control composites were much lower than that of either of the defects,
and defect two tended to have a larger number of total emissions than defect one. To visually determine if using
the number of total emissions would be an avenue worth exploring by means of classification, we separated
each test into its three blocks and totaled the number of emissions. The total number of emissions per test are
displayed in Table 27 for each group, and a 3-D plot of this data is found in Figure 14. Classification using
the total number of emissions was performed using LDA, QDA, Mahalanobis distance and kNN classifiers.

Various training and test sets were used to gain an idea of the sensitivity of the classifier to different
training sets. Recall that for each group there are 20 tests. Using the same sets from each group, we tested
five different training sets in order to test robustness to the training set. The various additional training set
combinations were: 11-20, 1-5/16-20, odds, and evens (with the test sets being the remaining data sets).

5.6.1 Results: LDA, QDA, Mahalanobis

Results for the classification of these five training sets using all three blocks with either 2 groups (control,
defect) or 3 groups (control, defect 1, defect 2) are given in Table 28.
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Test 1 2 3 4 5 6 7 8 9 10
Block 1 4 29 28 2 9 12 4 6 48 16
Block 2 2 8 10 4 5 11 5 12 42 20
Block 3 9 59 75 44 16 83 31 34 76 22

Test 11 12 13 14 15 16 17 18 19 20
Block 1 6 8 15 19 6 25 12 35 53 19
Block 2 19 4 12 19 5 7 6 33 14 9
Block 3 35 11 58 56 35 18 33 64 22 28

(a) Control Group

Test 1 2 3 4 5 6 7 8 9 10
Block 1 11 21 6 10 22 26 38 32 24 19
Block 2 5 78 26 11 147 24 45 35 14 15
Block 3 1839 1206 1097 1703 1746 1569 751 706 191 1320

Test 11 12 13 14 15 16 17 18 19 20
Block 1 43 29 107 13 9 21 10 5 7 9
Block 2 46 23 21 88 70 2 32 62 17 54
Block 3 1405 2624 1302 1468 1062 1382 2161 437 260 1039

(b) Defect 1 Group

Test 1 2 3 4 5 6 7 8 9 10
Block 1 72 62 49 143 42 130 201 172 125 31
Block 2 43 115 437 62 44 67 57 398 95 36
Block 3 2621 3269 3162 3872 2735 3221 2372 2050 3267 2359

Test 11 12 13 14 15 16 17 18 19 20
Block 1 80 33 126 89 43 20 44 37 54 119
Block 2 155 21 52 307 114 66 102 27 46 40
Block 3 2816 2639 3694 2414 1703 2273 3816 2740 3087 3154

(c) Defect 2 Group

Table 27: Total number of acoustic emissions of all 20 tests observed for each block in each of the three groups:
control, defect 1, and defect 2.

While it appears that LDA performed satisfactorily with low error rate in all trials, regardless of the
number of groups considered, there was at least one defect composite misclassified as a control in each trial.
As mentioned above, this is an undesireable type of misclassification and should be taken into consideration
with the error rate. When determining if a composite is a control or defect, it appears that QDA performs best
with lowest error rate, is not as sensitive to the training set as other methods, and when a misclassification
occurred, it was a control composite misclassified as a defect.

When considering classification into all three groups, it appears QDA again performs the best of the three
methods. In this case, QDA did not misclassify a defect as a control, but it did occasionally label a control as
defective and/or mix up the two defective groups.

5.6.2 Results: k-Nearest Neighbor

In the first set of tests, we input each classified acoustic emission from the training set individually into the
Matlab kNN structure. This creates a large set of points (in R

5 for the core set or R
8 for θ2). The testing
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Figure 14: A 3-D plot of the number of total emissions per block per group. The control data is represented
by blue diamonds, defect 1 by green circles, and defect 2 by red squares. Since the types of data are grouped
separately using the eye metric, this plot demonstrates intuitively the possibility of data separation using total
number of emissions per block as parameters.

Number of groups Method Error rate in tests used for training sets
First 10 Middle 10 Last 10 Even Odd

3
LDA 0.1667 0.0667 0.2000 0.1667 0.1000
QDA 0.1667 0.0667 0.1000 0.0667 0.1000

Mahalanobis 0.1333 0.2000 0.1667 0.1000 0.2000

2
LDA 0.1000 0.2000 0.1333 0.1667 0.0667
QDA 0.0333 0.0000 0.0000 0.0000 0.0000

Mahalanobis 0.1000 0.1667 0.1000 0.0667 0.0333

Table 28: Classification using the total number of emissions, broken into three blocks. Both 3 (control, defect
1, and defect 2) and 2 (control/defect) groups were considered for classification. Different training sets were
considered to test for classifier sensitivity by using, out of the twenty available tests per group, the first ten,
the middle ten, the last ten, all even tests and all odd tests.
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procedure was then followed for all the test sets. We used both the core and correlated parameter sets. Both
Euclidean and Mahalanobis distances were tried.

Instead of using the specific acoustic emission parameters, we used the counts of acoustic emissions for
each test. This results in a total of 60 data sets, 20 each for control, defect 1, and defect 2. We again use
Euclidean and Mahalanobis distance methods, and the values k = 1, 2, 3, and 4. Results shown in Tables 29-30
use the first 10 data sets in each group as the training data.

11 12 13 14 15 16 17 18 19 20
Control 0 0 0 0 0 0 0 0 0 0
Defect 1 1 2 1 1 1 1 2 1 1 1
Defect 2 2 2 2 2 1 2 2 2 2 2

Table 29: Classifications on the test set using total AE counts for test data coming from the control, defect
1, and defect 2 groups, using Euclidean distance. Test set identification numbers go across the top row, and
the true data set classification is listed in the left column. A 0 in a slot means that data set was classified as
a control set; 1 was classification as a defect 1 part; and 2 was classification as a defect 2 part. For example,
data set 14 from defect 1 was properly classified as defect 1, while data set 12 from defect 1 was misclassified
as defect 2.

11 12 13 14 15 16 17 18 19 20
Control 0 0 0 0 0 0 0 0 0 1
Defect 1 1 2 0 1 1 1 1 0 0 1
Defect 2 2 2 2 1 1 2 2 2 2 2

Table 30: Classifications on the test set using total AE counts for test data coming from the control, defect 1,
and defect 2 groups, using Mahalanobis distance. Test set identification numbers go across the top row, and
the true data set classification is listed in the left column. A 0 in a slot means that data set was classified as
a control set; 1 was classification as a defect 1 part; and 2 was classification as a defect 2 part. For example,
data set 14 from defect 1 was properly classified as defect 1, while data set 12 from defect 1 was misclassified
as defect 2.

As can be seen in Table 29, 100% of the control test set was classified properly. All the defective sets
were classified as defects, though one can see that certain data sets were misclassified in terms of which defect
they represented. In Table 30, we see that the nearest neighbor algorithm with the Mahalanobis distance has
significantly worse performance, in the sense that several defect 1 pieces were misclassified as control pieces.
Though the tables are not included here, for k = 2, 3 and 4, the performance decreased. Using both Euclidean
and Mahalanobis distances, with these higher k values at least some defect 1 composites were misclassified as
controls. In using Euclidean distance was consistently better than using the Mahalanobis distance.

As discussed before, we used different training data sets to test the robustness of the classifiers. The results
were the same for the additional training set combinations, except for training on the even data set numbers.
In the case of training on even test numbers, for k = 1 and 2 two defect 1 data sets out of 10 were misclassified
as controls, when using both the Euclidean and Mahalanobis distance options.

It seems that kNN using acoustic emission counts is a relatively successful procedure, but there is still some
risk of a defective part being misclassified as a control part. In the data sets studied, all control composites
were correctly classified. The dependence on the tuning parameter k is another source of discomfort, in that
we have only seen good results for k = 1. We would be more comfortable if multiple k values were successful.
Since we have other methods that do not risk missing a defective part and do not incorporate a user-defined
tuning parameter, it is our recommendation to not use kNN methods unless in conjunction with another
classification method or with larger training sets.

5.6.3 Summary of results on total AE-based classification

Using total acoustic emissions has proven to be a more consistently successful methodology for differentiating
between control parts and defective parts. Success rates near 100% are possible. This makes intuitive sense, as
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the defective parts are known to result in larger numbers of acoustic emission events; we have quantitatively
confirmed this intuition. We were also able to find methods (QDA and kNN) which could often differentiate
between the two types of defective parts. This is an improvement on the results from the previous section
which used the AE parameters individually.

6 Break and Deformation Load Estimation

Now that we have various techniques at our disposal to determine if the composites is safe or defective, we turn
to attempting to estimate the break load based on the acoustic emission signatures. Additionally, defective
pieces experience plastic deformation in block 3. We would also like to examine whether acoustic emission
data could be utilized to predict at which load level plastic deformation begins.

6.1 Estimating the plastic deformation load and break load

One of the goals that we tried to achieve was to be able to use an AE test to predict the plastic deformation
load and the breaking load of a given sample. A rough indicator that could be used is first identify whether
the composite is a control or defect. We then examined the load and AE data to see if we could predict the
plastic and break load of the samples. From the experimental data received it is observed that defect 1 and
defect 2 have similar plastic deformation loads. However the break load shows a greater variation as shown in
table 32. In Figure 15 we illustrate in blue, red and green the experimental load data for the control, defect
1 an defect 2 groups respectively.

To summarize once we are able to identify a sample in either control group or a defective one, the plastic
load can be inferred from the data shown in the tables 31 and 32. To some extent we can predict very
generally the break load for each type; however, the greater variance in break load makes this method difficult
to implement and unlikely to be successful.
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Figure 15: This plot shows that the plastic deformation load for the control group and the defective parts.
We can appreciate that the plastic deformation load is very similar for both type of defects.
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Table 31: Plastic Deformation Loads

Test Control Defect 1 Defect 2
1 2511.607 1659.380 1556.417
2 2286.560 1670.880 1494.949
3 2344.998 1662.166 1476.328
4 2320.693 1657.769 1520.011
5 2332.391 1650.884 1524.552
6 2377.380 1662.926 1540.643
7 2348.077 1663.081 1599.383
8 2324.075 1668.885 1455.657
9 2268.877 1733.062 1586.930
10 2354.190 1659.936 1508.331
11 2395.568 1661.603 1531.051
12 2439.318 1665.221 1505.990
13 2380.266 1663.293 1540.687
14 2492.415 1669.014 1515.458
15 2416.389 1672.434 1521.585
16 2421.562 1670.725 1472.048
17 2372.620 1665.094 1502.810
18 2380.824 1650.351 1571.482
19 2426.905 1665.718 1564.248
20 2462.590 1668.371 1602.866

minimum 2268.877 1650.351 1455.657
maximum 2511.607 1733.062 1602.866
mean 2382.87 1667.04 1529.57
STD 64.31 16.65 41.28

6.2 Using AE to detect damage

Now we describe briefly one approach that uses AE to detect major damage suffer by a piece during the tests.
The idea can be summarized as follows.

• We take the cumulative sum of the parameter 2 acoustic emissions in block three.

• We scale the time for block 3 by setting the starting time of the block equal to zero and the final time
equal to one houndred.

• We take the time derivative of the cumulative parameter 2, with respect to the scaled time.

• Now we define the detection time as the point where parameter 2 reaches one tenth of of its peak
value. This is going to be a value between 0 and 100 since we use the scaled time.

• Finally we plot the detection times for all the tests and all groups. (See Figure 16)

From the experimental information we set a detection scaled time threshold at 29 seconds and consider all
pieces with smaller detection time as pieces that must be analyzed for structural damage.

Note that for the defect 1 group tests 9, 18 and 19 had detection times above the threshold. We observe
the load curves for this tests (an example for test 9 is shown in Figure 18) we can see that the pieces did
not suffer extended plastic deformation. This confirms that the criteria outlined could be used to identify the
amount of damage to composites, even if it can not be used for a classification.
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Table 32: Break Load

Test Control Defect 1 Defect 2
1 6490.9 3278.9 4956.7
2 6305.5 3772.9 4583.7
3 6510.3 3268.7 4526.4
4 5544.6 3892.9 4916.9
5 6475.3 3392.5 5591.2
6 6469.2 3504.8 4395.9
7 6313.1 3927.8 5341.7
8 6161.1 3831.5 4430.0
9 5867.4 3849.9 5343.5
10 6492.0 3789.8 4131.9
11 6007.1 3613.1 4591.5
12 6344.9 3228.4 4949.4
13 6610.7 3928.3 4759.2
14 5786.8 3668.0 5275.6
15 6708.5 3598.6 5082.1
16 5819.4 3557.7 4799.5
17 4827.4 4197.7 4573.5
18 4218.1 4432.2 5083.4
19 6392.5 3700.3 5354.8
20 5334.8 4231.9 4878.0

minimum 4218.1 3228.4 4131.9
maximum 6708.5 4432.2 5591.2
mean 6033.98 3733.30 4878.25
STD 641.85 324.15 385.09
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Figure 16: Detection time for cycle 3, for Parameter 2.
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Table 33: Detection times for cycle 3

Test Control Group Defect 1 Defect 2
1 46.2 12.8 12
2 46.4 11.7 8.9
3 38.4 13.6 7.4
4 40.2 10.4 8.9
5 46.3 12.4 11.5
6 29.7 14.4 8.5
7 35.4 19.1 16.5
8 44.3 10.7 9.8
9 42.7 43.9 11.5
10 43.8 12.4 9.4
11 33.9 9.3 9.6
12 42 9.8 8.5
13 32.8 25.1 2.8
14 33.5 8.8 8.8
15 41.4 9.4 9.4
16 32.3 13.6 6.5
17 40.2 13.5 8.5
18 32 30.2 11.2
19 40.1 39 8.4
20 42.5 14.7 9.8
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Figure 17: This figure shows a scatter plot of the plastic and break loads of the control group and defective
groups.
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7 Future Work

A project of this magnitude naturally leads to a plethora of ideas for examination. Since this workshop lasted
only ten days, we have further ideas that we would try if we had the time. These could be natural extensions
of our work for LORD Corporation as they continue to study acoustic emissions of their composite materials,
or a basis for further collaboration with LORD.

• For the AE data set, the first ten tests of each group were used as training, due to time constraints.
In practice, we would randomly select training and test sets, and further exploration of this should be
considered.

• If one wished to examine kNN methods further, trying other distance methods would be the logical next
step. Matlab allows for over ten different metrics. There are also options for using classification trees
instead of an exhaustive search. Given time constraints, we did not examine these ideas, though they
could improve the performance of kNN.

• We ran out of time to explore models, such as linear regression, for predicting the load at which different
composites experience plastic deformation and the load at which the composites break. Many models
exist for predicting quantitative variables, and with the success we had in using acoustic emissions
and total number of emissions to predict group type, we think there may be predictive power in those
variables to determine these load points of interest.
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Abstract
Using form outlines of wheals, an algorithm in R was created to measure wheal size and wheal area. We

found that hand measurements of longest diameter and wheal size underestimates the computer-measured
values. Also, we found that there is not a strong linear relationship between wheal area and wheal size ,nor
between wheal area and longest diameter. Further area of research concerns extending our algorithm to be
able to image process wheals with out the aid of outlines.

1 Introduction and Motivation

Understanding allergic reactivity in humans has become a pressing area of research due to a significant increase
in respiratory diseases, such as asthma, since 1980 [1]. Using data from the National Health and Nutrition
Examination Survey (NHANES) III, which was conducted in the US from 1988 to 1994, [2], estimated that
54.3% of the US population is allergic to at least one allergen as evidenced by Skin-Prick Test (SPT) data. In
fact, this statistic may actually underestimate the prevalence of allergy reaction in the US [2]. Furthermore,
there is an urgent need to understand why asthma morbidity is especially high for children that live in less-
affluent, inner-city communities in the US [3]. Asthma and allergies significantly degrade the quality of life for
those affected and hence, improving current methods of analyzing allergic reactivity is an important avenue
to address.

1.1 Goals

The first goal of this paper is to address the measurement inaccuracies evident in current manual SPT proce-
dures. The second purpose of this paper is to evaluate the importance of measuring wheal area in addition to
measuring wheal size(sometimes also called average diameter).

1.2 Results

In this paper we were able to develop an image-processing algorithm for measuring wheal size and wheal area
using the R programming language. We measured the performance of this algorithm by utilizing built-in
functions in MatLab to measure wheals.

Furthermore, hand measurements of longest diameter and wheal size underestimate the computer-measured
values. With regard to measuring wheal area, we found that there does not seem to be a simple linear
relationship between wheal area and wheal size, nor between wheal area and longest diameter. However, the
correlations between wheal area and wheal size are almost one, hence whether or not our results are clinically
significant is unclear.

1University of Connecticut
2University of California, Santa Cruz
3Georgia Southern University
4University of Rochester
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2 Methods

2.1 Skin Prick Test Procedures

The SPT and IgE blood tests are the most common methods for testing and measuring allergic reactivity in
human subjects, but which method is superior is debatable. [5] In this paper we focus on the wheals that
develop from SPT’s. In general, SPT’s are conducted at a medical facility where a clinician uses a pre-ordered
SPT system which includes allergen extracts, trays with which to prepare the extracts, and tools with which to
apply the extracts to the skin. Specifically, a clinician often uses a tool that allows for simultaneous application
of a test-panel of allergens. An example of such a tool is the ComforTen (Hollister-Stier, Spokane, WA) which
can apply a test-panel of ten allergens to the skin.

After a patient has been ”pricked” with allergens, clinicians typically wait fifteen minutes for wheals to
develop. A positive control, histamine, and a negative control (no allergen) are always included in the test-
panel. A wheal should always develop for the positive control, whereas a wheal may or may not develop for the
negative control. A patient is considered to have a valid SPT if she developed a wheal size of 3mm or greater
for the positive control and a wheal size less than 3mm for the negative control. Furthermore, a patient is
considered to have a positive reaction to an allergen if the corresponding wheal has a wheal size 3mm greater
than the negative control wheal size.

Now, current methods of measuring wheal size are the main motivation for this paper as they are prone
to human error and inaccuracy. Wheal size is typically measured manually, although there has been recent
progress towards measuring wheal size with the aid of technology [6, 7]. The manual process first requires a
clinician to find and measure the longest diameter of the wheal, using special rulers designed for measuring
wheals. The next step is to find the mid-point of the longest diameter, and then measure the perpendicular
diameter that goes through the midpoint. Then, the wheal size is calculated by taking the average of the longest
diameter and the perpendicular diameter. The clinician records these measurements on a pre-prepared form
designed for recording wheal sizes, which we will refer to as forms. A clinician then makes an outline of the
wheals on the skin using a dark colored pen. Finally, the clinician transfers the wheal outline to the back of
the form using transparent masking tape. See Figure 1(middle, right) in section 2.8. We will refer to these
tape-transferred wheal outlines as form outlines.

2.2 Image Processing Methods

As described previously SPT’s are prone to inaccuracy due to human error. Furthermore, the precise area of
a wheal has rarely been taken into account because it is near impossible to manually calculate the area of a
wheal, especially if the wheal is non-circular or non-spherical. Hence, we propose the use of image processing
in order to measure wheal area, and to obtain precise measurements for the longest diameter, perpendicular,
and wheal size. [7, 8, 9, 10] have also proposed the use of image processing to measure wheals.

Although there has been some success in using image processing to measure wheals, a procedure that is
automated and does not use the assistance of wheal outlines has yet to be established. For example, [6, 7, 4],
have had success in automating wheal measurement using image processing software, but only from form
outlines. Now, [10, 9] have shown progress in measuring wheals straight form a digital image, but automation
and ease-of-use of their image processing methods are not apparent.

2.3 Digital Images

In this section we aim to explore image processing techniques for measuring wheals with emphasis on mathe-
matical and statistical techniques used in this paper. First, a very simplified explanation of digital images is
in order. In this paper we work with Red-Green-Blue (RGB) images. RGB images are stored in pixels, which
have a square dimension. Many times in bad quality images, one can actually see these square pixels. Now,
each pixel has a red, green, and blue value. Usually the red, green, and blue values range from 0-255, where
0 is the lowest intensity shade of the color and 255 is the highest intensity shade. Note, that any color can be
made from shades of red, green and blue. So, a digital image is essentially a very large matrix of numbers,
and we can use this fact to manipulate digital images. Hence, the terms image and image-matrix will be used
interchangeably.
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At the high-level, the general procedure of processing wheal images begins by manipulating the image so
that the wheal, or more specifically the wheal edges, are easily recognized by a computer. Next, edge detection
procedures are implemented to recognize the borders of a wheal. These first steps are challenging, but once
accomplished it is fairly easy to calculate wheal area.

2.4 Image Manipulation

The goal of image manipulation is to distort the original image so that it will be easier for a computer to
decipher a wheal from skin. In other words, the wheal is our region of interest in an image, and the surrounding
skin is noise. In order to enhance the wheal in an image we can for example, distort the brightness/contrast of
the colors of the image. Furthermore, we can change the color values of an image based on certain thresholds.
Linear smoothing filters are a successful and popular technique for getting rid of noise in an image.

Linear smoothing filters are positive, (usually discrete)linear matrices with very small dimensions that are
applied to each pixel in an image (and it’s surrounding pixels). The resulting image will look smoother than
the original image. Say for example, we have an image-matrix, Γ, and a linear smoothing filter matrix, γ. A
noise-reduced or smoother image-matrix, Γ′, is then calculated using the following equation.

Γ′(µ, ν) =
∑

(x,y)∈γ

Γ(µ+ x, ν + y) · γ(x, y)

Where (µ, ν) represents pixel coordinates in the image, (x, y) represents pixel coordinates in the linear
smoothing filter, and x << µ, y << ν.

Now, a Gaussian filter is a type of linear smoothing filter where the values in the filter matrix follow a
discrete, two-dimensional Gaussian kernel.

K(x, y|σ) = exp

(
−x

2 + y2

2σ2

)
where x and y determine the distance from the center of the filter-matrix. Below is an example a Gaussian

filter matrix. 
0 1 2 1 0
1 3 5 3 1
2 5 9 5 2
1 3 5 3 1
0 1 2 1 0


See [11]
Another widely used image manipulation technique is to extract the red, green, or blue values from the

image matrix and create a grey-scale image. Note, that to make any shade of grey in a digital image, one
only needs to make the red, green, and blue values equal. This technique has proven to be very useful for
identifying wheals. [6]

2.5 Edge Detection

There are many ways to approach edge detection in digital images. For example, [7] uses watershed techniques
to identify pen outlines of wheals, which were described in more detail in the introduction. In this paper we
consider two widely used edge detection algorithms, the Marr-Hildreth algorithm and the K-Means clustering
algorithm.

The Marr-Hildreth algorithm is based on the fact that red, green, or blue values at edges are drastically
different than the RGB values for the rest of the image. The first step of the algorithm smooths the image
using the same Guassian filter described previously. The next step is to compute the Laplacian for all points
(µ, ν) in the filtered image, Γ′.

∇2 =
∂2

∂µ2
+

∂2

∂ν2
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The final step of the algorithm finds edge pixels by recognizing pixels for which there is a zero-crossing in
the Laplacian. See [12]

Now, the K-Means clustering method assumes that the image-matrix data is distributed according to K
clusters with K centers. Given K, the K-Means algorithm can identify the clusters, ζ1, .., ζK , by minimizing
the sum of squared distances among all the points, (µ, ν) in the image-matrix, Γ. Specifically, the goal is to
minimize the sum of squared distances within in each cluster.

The algorithm first picks random points, α
(`)
1 (µ, ν)..., α

(`)
K (µ, ν), in Γ to represent the K centers for each

cluster, ζ1, .., ζK . It then assigns each image-matrix point, (µ, ν), to one of the clusters based on the following
criteria.

(µ, ν) ∈ ζn if ||(µ, ν)− α(`)
n || < ||(µ, ν)− α(`)

m || (1)

for all m,n = 1, ..,K and m 6= n.

The next step in the algorithm then assigns new centers, α
(`+1)
1 , ..., α

(`+1)
K , such that the sum of squared

distances in each cluster is minimized. This minimum is attained using the following equation.

α`+1
n =

1

Ωn

∑
(µ,ν)∈ζn

(µ, ν) n = 1, ...,K (2)

where Ωn, represents the total number of image-matrix points in cluster n. The algorithm then reassigns
image-matrix points as in equation (1) and reassigns new centers as in equation (2) for L iterations until

α
(`)
n = α

(`+1)
n for all n = 1, ..,K clusters.[13]

There are many different versions of the K-means algorithm, and in fact we specifically use a more robust
version explained in more detail in section 3.

2.6 Calculating Area

The method used for calculating wheal area in this paper involves counting the number of pixels that lie within
a wheal. Of course, once a wheal object is detected in an image, the methods of counting the pixels in the
wheal vary. For example [8] uses an ellipse fitting approach for counting the number of pixels in a wheal. In
this paper we count the number of pixels in the wheal by implementing a convex hull algorithm.

Now, consider the image of a wheal, θ, that is within a bigger image, Γ, and both θ and Γ exist in R2. The
convex hull of θ is the smallest convex set that contains all points in θ. Hence, an convex hull algorithm will
try to find the smallest convex polygon in Γ that contains all the points in θ. A convex hull algorithm also
provides the vertices of this optimal convex polygon, and thus we can easily count the number of pixels once
the convex hull is found. Note, that the vertices of the convex hull can also assist in calculating the longest
diameter of a wheal. See Figure 2

Now, once the number of pixels in the wheal have been counted, we must convert pixels into a standard
measurement of area, such as mm2. This is somewhat a matter of experiment design. For example, [9] position
a camera at a specific distance from a patient’s arm when taking a picture of a wheal or wheals, and take this
specified distance into account. For studies that measure wheals by scanning form outlines, they simply take
into account the resolution of a scanner to convert to mm2 [6]. In this paper we use reference objects in our
wheal images, such as pennies or nickels, or we take into account the area of a standard piece of printer paper.

2.7 Image Processing Software

There is a wide variety of software available for implementing the image processing techniques described in
this section. For example [6, 7] use Khoros, [6] uses ImageJ, [9] uses Adobe PhotoShop, and [9] uses OpenCV.
For this paper, we decided to use R because it is quite flexible and is convenient for performing statistical
analysis and wheal measurement data. We also used built-in image processing functions in MatLab to validate
our results from R, and we get similar results under both programs. Lastly, we utilize ImageJ to obtain the
box-bounding coordinates of form outlines.
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Figure 1: FO image processing: cropped image(left), detected edges using Marr-Hildreth (middle), enveloped
wheal using convex hull (right)

2.8 Data collection

The wheal images were collected at University of North Carolina Chapel Hill research facility where nurses
performed SPT’s, as described in subsection 2.1, on fourteen volunteers. Only seven of the fourteen volunteers
reacted to the allergens whom provided 30 valid wheals. Hence, we analyze 30 wheals from form outlines.

Two test-panels, each with eight allergens, were applied to the volunteers. The first panel tested for
Histamine (positive control), Glycerin (negative control) Mite Pteronyssinus, Mite Farinae, Cockroach, Tree
Mix (GS) 10, Grass Mix GS7, and Weed. The second panel tested for Mold 1, Mold 2, Cat, Guinea Pig,
Rabbit, Dog, Rat, and Mouse.

Pictures were then taken of the wheals with reference objects such as rulers or coins. After nurses measured
wheals and outlined the wheals, more pictures were taken of the wheals with outlines on the skin. We were
given the original copies of forms with longest diameter measurements and form outlines of wheals. We scanned
in the form outlines, and we mainly imaged processed these form outlines to obtain wheal measurements. See
Figure 1. Later, a researcher of this study also measured the longest diameter, perpendicular, and wheal size
manually from the form outlines.

3 Establishing an Automated Measurement of Allergic Reactivity
via Image Processing

In this section, we describe how to apply image processing for measuring wheal size and wheal area. In this
study we worked with three types of wheal images: form outlines (FO), bare skin with outlines (BWO), and
bare skin with no outlines (BS). See Figure 1. Note, As mentioned previously, using image processing to
manipulate an image to detect a wheal is the main challenge. While detecting wheals from BS images is not
the impossible, our BS images were of poor quality and were very difficult to manipulate in an automated
fashion. Hence we were only able to work with FO and BWO images.

3.1 Calculating Wheal Measurements for Form Outlines

Fortunately, the FO image has a relatively simple image structure in terms of RGB. Hence, we were able to
developed an automated method for FO images. The FO images contained several wheals in each image See
Figure 1, thus we cropped the images to include only one wheal, and we performed our algorithm on each
cropped wheal image. The first step of our algorithm manipulates the image using a Gaussian smoothing
method, which blurs the image and removes noise. The next step of our algorithm implements the Marr-
Hildreth algorithm to detect the edges of the wheal. Once the edges have been detected our algorithm then
uses convex hull to envelop all the pixels within the wheal. Next, the algorithm counts the number of pixels
within the convex hull and converts pixels to mm2 to provide the area of the wheal. See Figure 2
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Figure 2: FO image processing: cropped image(left), detected edges using Marr-Hildreth (middle), enveloped
wheal using convex hull (right)

As mentioned earlier we can obtain the vertices of the convex hull. Since the convex hull is the smallest
convex polygon containing all points in the wheal, the longest distance between any two vertices is the longest
diameter of the wheal. Also, by rotating the image we can measure the length of the perpendicular diameter.
Hence, our algorithm automatically calculates longest diameter, perpendicular diameter, and wheal size.

3.2 Calculating Wheal Measurements for Bare Skin with Outlines

The procedure for BWO images is very similar to that of FO images. However, we use a different edge detection
method because BWO images are more complex because they have a complicated color structure due to skin
tone. The Marr-Hildreth algorithm is not sufficient for detecting wheal edges in BWO images because it is
sensitive to noise. See Figure 4. Usually, this kind of problem can be solved by adjusting contrast and/or
intensity of colors. However, manipulating the color tone requires special adjustments depending on the image,
which defeats the purpose of automation. Therefore, we need a more robust method of edge detection.

First, we investigate the matrix structure of each color channel in BWO images in order to determine an
appropriate method since general edge detection techniques rely on the image-matrix structure. From the
exploration, we find that there is a pattern in the image-matrix. Figure 3 is a plot of color intensities for the
100th row in the image-matrix. We can see that all colors dramatically decrease at around the 50th and 300th
column, and these points correspond to the outline around the wheal. Since a black pen was used to draw
the outline, the plot looks reasonable. Now it is easy to see that we can use clustering methods to detect the
edges of the wheal. Specifically, we use a similar version to the K-Means algorithm that is more robust than
the version explained in section 2.

Robust k-means algorithm Let ζR = {ζR1 , ζR2 }, ζG = {ζG1 , ζG2 }, and ζB = {ζB1 , ζB2 } be classes of clusters
for red, blue, and green channels, respectively.
1) For each channel, the point (µ, ν) is assigned to each channel cluster via a k-means algorithm in section 2.
2) If (µ, ν) ∈ ζR1 ∩ ζG1 ∩ ζB1 , then assign (µ, ν) ∈ ζ1, else assign (µ, ν) ∈ ζ2.

Here, ζ1 indicates the wheal outline and ζ2 is skin. Since the algorithm addresses the cluster ζ1 only when
the element of the image matrix is assigned the first clusters for all channels, it becomes robust against noises.
Figure 4(right) shows the result of the edge detection via the robust k-means algorithm. According to the
figure, we know that the robust detector captures the wheal outline well.

4 Data analysis

In this section we first provide some descriptive statistics and definitions for the variables used in the analysis.
Next we evaluate the inaccuracies of human wheal measurements. Then we analyze three relationships among
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Figure 3: Plot of Intensity for 100th row color channels

Figure 4: OS type image processing: original image(left), detected edges by Marr-Hildreth(middle), and
detected edges by robust k-means(right)
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our variables. First, longest diameter measured at the UNC Research Lab (LLD) versus wheal size measured
by researcher of study (SWS). Next, SWS versus wheal size measured by R (RWS). And finally, RWS versus
wheal area measured by R (RA).

4.1 Variables and Descriptive Statistics

The variables analyzed in this study are provided in Table 1. Our variables were obtained by three different
methods, by hand, in Matlab, and in R, for each of the 30 wheals. See Appendix for raw data.

Variable Description
LLD Length of longest diameter of wheal measured at UNC Research Lab
SLD Length of longest diameter of wheal measured by researcher of study
RLD Length of longest diameter of a wheal measured in R
MLD Length of longest diameter of a wheal measure in MatLab
SLP Length of Perpendicular diameter (to the longest diameter) measured by researcher of study
RLP Length of Perpendicular diameter measured in R
MLP Length of Perpendicular diameter measured in ML
SWS The size of the wheal calculated by researcher of study (SLD+SLP)/2
RWS The size of the wheal calculated in R (RLD+RLP)/2
MWS The size of the wheal calculated in MATLAB (MLD+MLP)/2
RA Wheal area measured in R
MA Wheal area measured in MatLab

Table 1: List of variables

Table 2 gives a list of mean and standard deviations of each variable. We can see that the difference between
the average longest diameters, perpendicular diameter and wheal size among each method of measurement
is negligible. Table 3 provides correlation coefficients for the variable according to the three measurement
methods. We can see that all the variables are strongly correlated.

Measurements Mean Sd

Matlab

LD 12.54 5.57
LP 8.53 2.70
Wheal Size 10.54 3.93
Area 91.28 66.78

Hand
LD 12.13 5.42
LP 8.23 2.70
Wheal Size 10.18 3.84

R
LD 12.71 5.60
LP 8.45 2.72
Wheal Size 10.58 3.96
Area 91.37 67.18

Table 2: The summary statistics for wheal’s measurements

4.2 Measurement Error Evaluation

The first box plot on the left in Figure 4.2 plots the difference in longest diameter measured at the UNC
Lab (LLD) and the longest diameter measured by R (RLD). Now, the second box plot in the figure plots the
difference in the longest diameter measured by UNC Lab and the longest diameter measured by researcher
of study (SLD). The first box plot shows most of the difference between LLD and RLD are negative, which
strongly suggests that humans may be underestimating the true longest diameter. However, the second box
plot suggests that longest diameter measurements between different humans are not obviously dissimilar.
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Wheal Size Area

Matlab
Wheal Size 1.00 0.99
Area 0.99 1.00

R
Wheal Size 1.00 0.99
Area 0.99 1.00

Hand Wheal size 1.00 0.99

Table 3: The analysis of correlation coefficients
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Table 4.2 provides T-tests for the longest diameter difference between LLD and RLD, and for the difference
between LLD and SLD. We can see from the table that the difference between LLD and RLD are statistically
significant at the 5% significance level. This result confirms our observation from the left box plot if Figure
4.2. Now, for LLD and SLD, there is no evidence that the two measures are statistically significantly different.
These t-tests are valid as shown by the Shapiro-Wilk test.

LLD-RLD LLD-SLD
Shapiro-Wilk test 0.1902 0.1350
t-test 0.0075 0.1590

Table 4: The P-values of Shapiro-Wilk test and one sample t-test.

4.3 LLD vs SWS, SWS vs. RWS, RWS vs. RA

For the relationships between LLD and SWS; SWS and RWS; and RWS and RA, we fit regression models
(linear or quadratic) and non-parametric models to the data for these variables. A breif explanation of non-
parametric models is in order. When a regression model cannot catch the curvature of the data efficiently
a more flexible model, such as a non-parametric model is needed. In these models we only deal with one
independent variable, therefore the following non-parametric simple regression model is appropriate.

Yi = f(Xi) + εi, i = 1, . . . , n (3)
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where f(.) is an unknown smooth function, εi are random errors with mean zero and finite variance σ2.
f(.) will be estimated by using the local polynomial technique [14, 15].

Looking at Figure 4.3 and Table 5 we investigate the linear relationship between LLD and SWS. First,
the linear model had a significant coefficient, however the residuals plot showed a slight pattern. Therefore,
we fit a non-parametric model for our data, and found that the 95% confidence bands cannot cover the linear
model, hence the data is not linear.

Now, again looking at Figure 4.3and Table 5 we also examine the linear relationship between SWS and
RWS. In this case, the linear model can fit the data very well and the residuals plots look normal. Hence,
SWS can totally represent RWS.

For RWS and RA we first fit a quadratic regression model to our data since wheal size is also considered the
average diameter of a wheal. Furthermore, most of the wheals in the form outlines are circular in shape. Even
with a quadratic term in our linear regression, there is still an obvious pattern in our residuals. Therefore, we
fit a non-parametric model to the data. As in the first model, the 95% confidence bands cannot completely
cover the fitted line of the quadratic linear regression. This implies that RWS and RA do not have a perfect
linear relationship.
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Figure 5: ((left) Red line indicates fitted line for linear model, blue line fitted line for non-parametric model for
LLD vs SWS. (middle) Red line indicates fitted line for linear model, blue line fitted line for non-parametric
model for SWS vs RWS. (right)Red line indicates fitted line for quadratic regression model, blue line fitted
line for non-parametric model for RWS vs RA. The blue dots are real observations. The dash line is 95%
confidence intervals for the non-parametric models.

Estimate Std. Error t value Pr(>|t|)

LLD vs SWS
Intercept 3.4765 0.7801 4.4566 0.0001
Longest diameter 0.5832 0.0609 9.5830 0.0000

SWS vs RWS
Intercept 0.1375 0.2263 0.6079 0.5482
Wheal Size true 1.0252 0.0208 49.2004 0.0000

RWS vs RA
Intercept 91.3659 1.2810 71.3264 0.0000
Wheal Size 358.8912 7.0161 51.1527 0.0000
(Wheal Size)2 27.4925 7.0161 3.9185 0.0005

Table 5: The analysis results for parametric regression models.

5 Concluding Remarks

The R algorithm created in our study was extremely close to fully automating the process of estimating wheal
area (and other measurements) using form outlines. The code for the algorithm can be found in the appendix.
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The only manual part of our algorithm is that we used ImageJ to identify the bounding box coordinates of
wheal outlines on a form. These images and the bounding box coordinates correspond to the two parameters
of our algorithm. Hence an area of further research would certainly be how to create R code to recognize wheal
outlines in in form outlines. Collecting more wheal samples and exploring the relationship between possible
variables such as skin tone, race, gender and wheal sizes warrant future research work. In the future we hope
to have better quality images so that we can create a machine learning algorithm to recognize wheals directly
from skin.
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6 Appendix A - Raw Data

Matlab Manual R
Wheal ID LD LP Wheal Size Area LD LP Wheal Size LD LD Wheal Size Area

AC01 13.03 7.98 10.51 80.40 12 8 10.00 12.91 7.77 10.34 79.82
AC02 8.90 6.35 7.63 43.47 9 7 8.00 8.90 5.98 7.44 43.45
AC03 9.69 5.29 7.49 39.65 9 5 7.00 9.90 5.22 7.56 39.19
AC04 10.38 6.42 8.40 51.47 11 5 8.00 10.65 6.37 8.51 51.23
AC05 11.94 7.25 9.59 66.78 11 8 9.50 11.72 6.11 8.92 61.69
AC06 14.15 13.82 13.99 151.09 14 13 13.50 14.62 13.75 14.19 152.23
AC07 9.24 6.21 7.73 44.50 10 6 8.00 9.60 6.37 7.98 45.34
EK01 10.78 9.11 9.95 75.95 10 9 9.50 11.40 9.55 10.47 76.35
EK02 7.33 4.34 5.84 24.37 7 4 5.50 6.97 4.07 5.52 23.97
EK03 8.26 6.25 7.25 39.98 8 6 7.00 8.03 5.98 7.01 40.16
EK04 7.42 6.42 6.92 36.93 7 6 6.50 7.44 6.75 7.09 37.44
EK05 7.09 6.90 7.00 37.94 6 6 6.00 7.34 6.87 7.11 38.24
GG01 14.60 12.14 13.37 136.26 14 12 13.00 15.20 11.97 13.59 135.90
GG02 21.88 12.97 17.43 220.54 22 13 17.50 22.30 13.11 17.71 222.14
GG03 21.32 12.04 16.68 197.52 21 12 16.50 21.89 11.97 16.93 199.08

J01 11.55 9.36 10.45 82.74 12 9 10.50 12.09 9.55 10.82 82.47
J02 7.00 5.35 6.17 28.58 7 5 6.00 7.21 5.35 6.28 28.71
J03 8.93 7.19 8.06 49.86 8 7 7.50 9.11 7.00 8.06 50.08
J04 9.28 6.27 7.78 44.90 10 6 8.00 9.34 6.37 7.85 44.40
J05 29.10 10.88 19.99 243.07 28 10 19.00 29.24 10.95 20.10 244.47
J06 9.07 7.03 8.05 49.30 8 7 7.50 9.12 7.38 8.25 49.84
L01 10.69 8.13 9.41 67.10 10 8 9.00 10.59 7.77 9.18 67.19
L02 10.70 7.22 8.96 59.98 10 7 8.50 11.11 7.51 9.31 60.06

NW01 10.88 9.25 10.06 78.06 11 9 10.00 10.88 8.91 9.89 78.73
NW02 22.34 13.38 17.86 231.25 21 13 17.00 22.18 13.37 17.78 231.18
NW03 12.14 10.97 11.56 101.47 12 11 11.50 12.29 10.57 11.43 101.87
OS01 10.49 9.27 9.88 74.78 11 9 10.00 11.27 9.80 10.54 74.03
OS02 16.23 10.30 13.26 128.93 15 10 12.50 16.01 10.06 13.03 129.53
OS03 22.92 12.05 17.49 212.30 22 11 16.50 22.87 11.46 17.16 212.64
OS04 8.87 5.75 7.31 39.30 8 5 6.50 8.96 5.60 7.28 39.53

Table 6: The dataset collected from 7 volunteers

7 Appendix B - R Code

library(biOps)

library(cluster)

library(dismo)

library(AnalyzeFMRI)

image = readJpeg("C:\\IMSM\\elk.jpg")

crop = read.csv("C:\\IMSM\\elkcrop.csv", header=TRUE)

allergy = function(image, crop){

total.pixel=dim(image)[1]*dim(image)[2]

area.mm = (8.5*25.4)*(11*25.4)



ratio= area.mm/total.pixel

ratio2=11*25.4/2200

attach(crop)

bumpArea = vector("numeric", length=nrow(crop) )

LD = vector("numeric", length=nrow(crop))

Perp = vector("numeric", length = nrow(crop))

WhealSize = vector("numeric", length = nrow(crop))

label = seq(1, nrow(crop), 1)

for(i in 1:nrow(crop)){

bump= imgCrop(image,BX[i],BY[i],Width[i],Height[i])

plot(bump, main = label[i])

Gau<-GaussSmoothArray(bump[,,],ksize=5)

bump[,,]<-Gau

bump.MH = imgMarrHildreth(bump,2)

plot(bump.MH, main = label[i])

#bump.new = r_dec_intensity(bump,0.2)

#bump.new.MH = imgMarrHildreth(bump.new,2)

G<- bump.MH

train = which(as.matrix(G[,,1])==0,arr.ind = TRUE)

test = which(as.matrix(G[,,1])<300,arr.ind = TRUE)

ch = convHull(train)

Pred = (1-predict(ch, test))*255

G[,,] = Pred

plot(G, main=label[i])

BlueVal = imgBlueBand(G)

pixels=sum(c(BlueVal)==0)

bumpArea[i] = pixels*ratio

Poly<-ch@polygons@polygons[[1]]@Polygons[[1]]@coords

H<-length(Poly[,1])

MaxDist<-0

for(k in 1:H){

I<-k+1

if(I<H){

for(m in I:H){

Diam<-sqrt((Poly[k,1]-Poly[m,1])^2+(Poly[k,2]-Poly[m,2])^2)

if(Diam>MaxDist){

MaxDist<-Diam

Point<-rbind(Poly[k,],Poly[m,])

}

}

}

}

Slope<-(Point[1,2]-Point[2,2])/(Point[1,1]-Point[2,1])
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Middle<-round(c(mean(Point[,1]),mean(Point[,2])))

G[Point[1,1],Point[1,2],]<-c(255,0,0)

G[Point[2,1],Point[2,2],]<-c(255,0,0)

theta<-atan(Slope)*2/pi*90

Middle<-round(c(mean(Point[,1]),mean(Point[,2])))

m1<-Middle[1]:(Middle[1]+1)

m2<-Middle[2]:(Middle[2]+1)

G[m1,m2,]<-c(200,200,200)

plot(G, main=label[i])

Rotate.G<-(imgNearestNeighborRotate(G,theta))

M.rotate<-which(as.matrix(Rotate.G[,,1])==200,arr.ind = TRUE)

alpha<-M.rotate[1,1]

gamma<-M.rotate[1,2]

T1<-0

while(Rotate.G[alpha,gamma,1]<255){

T1<-T1+1

alpha<-alpha+1

}

Rotate.G[alpha,gamma,]<-c(200,200,200)

alpha<-M.rotate[1,2]

while(Rotate.G[alpha,gamma,1]<255){

T1<-T1+1

alpha<-alpha-1

}

##################

alpha<-M.rotate[1,1]

gamma<-M.rotate[1,2]

T2<-0

while(Rotate.G[alpha,gamma,1]<255){

T2<-T2+1

gamma<-gamma+1

}

Rotate.G[alpha,gamma,]<-c(200,200,200)

gamma<-M.rotate[1,2]

while(Rotate.G[alpha,gamma,1]<255){

T2<-T2+1

gamma<-gamma-1

}

T<-min(T1,T2)

#Rotate.G[alpha,gamma,]<-c(200,200,200)

#plot(Rotate.G)

#sum(G[,,1]==0)/(1700*2200)*28*21.65 # area of wheal

Perp[i] = (T-2)*0.01273128*10 #perpendicular

LD[i] = MaxDist*0.01273128*10 #longest diameter

WhealSize[i] = (Perp[i]+LD[i])/2

}

measurement = data.frame(Bump = seq(1, nrow( crop), 1), Area = bumpArea, Perpendicular = Perp,Longest_Diameter = LD, Wheal_Size = WhealSize )

return(measurement)

14



}
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Abstract
Post-market vigilance of drug safety has been legally mandated for pharmaceutical companies and regu-

latory agencies. However, new developments in the quantitative methodologies of what has been called the
science of safety have been scarce in the past few decades. The main source of post-market data for potential
drug induced adverse events (AE) are spontaneous reporting systems (SRS) such as the Adverse Event Re-
porting System (AERS) managed by the Food and Drug Administration (FDA). The goal of analysis of these
reporting systems is detection of new and unexpected drug-AE relationships that may be of potential harm to
the public; in the literature this is referred to as signal detection. In this paper we review existing quantitative
methods for signal detection in SRS that are in widespread use, the so-called disproportionality analysis (DA)
methods. We identify known drug-AE relationships using historical data on FDA labelling changes and use
AERS data on these pairs as case studies. We analyze these case studies using the existing methods, employing
novel approaches of signal detection over demographic strata and over time. Using our case studies, we find
that these analytic approaches are potentially valuable. Furthermore, we generate simulated SRS data for
the purpose of testing the sensitivity of the existing DA methods. From this exercise we conclude that more
simulation should be done and we strongly advocate the development of a reference database on which to test
these DA methods. We conclude that DA in the context of signal detection in SRS are an important tool for
pharmacovigilance and we conclude that the development of more sophisticated statistical methods to deal
with the unique and complex problems presented by analysis of SRS are valuable.

1 Introduction and Motivation

Pharmacovigilance concerns the monitoring and detection of adverse events associated with the use of medicines.
This process starts with designed clinical trials, and continues throughout the drug’s life cycle after approval,
when its use is widespread among the population.

In the post-approval environment, the primary method of data collection for surveillance purposes comes
from spontaneous reporting systems (SRS), such as the Adverse Event Reporting System (AERS) of the Food
and Drug Administration (FDA). These tools produce databases which contain a collection of reports of side
effects, all of which are submitted voluntarily by clinicians, patients, or product manufacturers. Each report
in an SRS database typically includes limited demographic information (such as age, sex, and weight), one or
more drugs, and one or more adverse events.

The objective of creating these systems was to provide data that allows for the investigation of possible
safety problems associated with the use of drugs, since some of these would be impossible to detect during the
limited run of a clinical trial. In addition, clinical trials are unlikely to reliably detect rare, serious adverse
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events that occur in subpopulations who have not participated in studies. Furthermore, as new medical prod-
ucts enter the market, the potential for interactions with other drugs, biologics, medical devices, and foods
increases. Detecting possible relationships between drugs and adverse events in a timely fashion could prove
extremely important to public health. Signal detection can be the first indication that a certain association
should be studied more closely. It could also be informative for pharmaceutical companies as a continued
testing scheme, to avoid potential lawsuits and to comply with the FDA regulations regarding surveillance.

In 2007, active post-market drug safety surveillance and analysis was mandated by a law passed in Congress,
the Food and Drug Administration Amendments Act. In response, the FDA put in place the Sentinel Initiative
with the ultimate goal of creating and implementing a national, integrated, electronic system for monitoring
medical product safety. The Sentinel Initiative represents the implementation of what the FDA calls the
science of safety which combines medical and pharmacological data with quantitative methods, with the goal
to “generate hypotheses about, and confirm the existence and causal factors of, safety problems in the popu-
lations using the products”[2].

Hence the appeal for the development of analytic methods that might help identify possible starting points
of interest. In particular, the drug safety literature often uses the term signal to refer to early hints that point
at the possibility of novel and unintended drug effects. The approach of this investigation has to do with
signal detection in SRS databases.

However, as can be imagined, there are a number of limitations inherent to the type of databases obtained
from SRS. These issues should be noted and kept in mind when formulating conclusions or making decisions
based on the information provided by the data. We just briefly mention some of them in this document.

First of all, these datasets are incredibly large and disorganized. To give an idea of their magnitude, the
FDA receives more than 400,000 of these spontaneous reports each year [1]. The lack of a standardized nomen-
clature for drug names (including different names for the same drugs, misspellings, or the inclusion of dosages
with the name, among others) and the use of multiple terms for similar clinical conditions presents a challenge.

Several problems appear due to the voluntary nature of the reporting process. One is the serious problem
of over-reporting, which could occur for example because of the influence of publicity or a warning set up on a
certain drug. In addition, there could be under-reporting, which may depend on the event and its severity, for
example, or the lack of knowledge of the reporting system. Finally there could be multiple submissions: for
example, when a person is taking a combination of drugs the report might sent to all of the manufacturers,
who in turn file separate reports to the FDA. Additional problems present themselves because many reports
of events do not necessarily reflect associations to the drugs that they allude to, and because there is limited
information regarding the order of exposure and condition, or even the duration of exposure. Most impor-
tantly, SRS databases don’t contain information about the number of patients at risk, that is, the population
that was exposed to a specific drug. In short, there is considerable bias and noise in the data that undermines
its reliability.

It is extremely important to note that any conclusions obtained from these databases cannot establish
causality. At best, the analyses might identify potential issues and associations that must be confirmed by ex-
pert epidemiologists and clinicians in follow-up studies. Actually, many signals that emerge from spontaneous
report databases are mostly noise, because there are many factors that are intermingled in a report such as
treatment indications, co-prescribed drugs, reporting artifacts, etc., or because the reported adverse events
are already labeled, are medically trivial, or biologically implausible.

Despite the many limitations of the available datasets necessary for post-approval analyses, there is an in-
terest in the pharmacology community to develop analytic methods to quantify and detect signals that might
appear in the spontaneous report databases, since these are the only sources of information currently available
about drugs once they are widespread in the market. As previously mentioned, there are thousands of drugs
and thousands of adverse events (AEs) that need to be studied. The complexity of these large datasets makes
drawing inferences about the extremeness of drug-event counts intractable without the help of quantitative
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summaries and analysis. This difficulty, in addition to the terms of the recently approved Sentinel Initiative,
has generated more interest in these methods on the part of the regulators, the health care community, and
industry.

There are multiple methods of signal detection presently in use, and one of the objectives of this project is
to understand the current approaches and to explore and identify potential modifications or areas of improve-
ment for these methods. Additional objectives include analyzing a dataset for a particular drug-adverse event
that has not been investigated before, and exemplifying the importance of stratification based on demographic
covariates.

This document is organized as follows. In section 2 we describe the AERS database and the particular
subsets that we used for analysis. In section 3 we outline the four most commonly used signal detection meth-
ods, and highlight some of their advantages and limitations. In section 4, we propose three novel sequential
methods to detect possible signals from a time series of disproportionality scores. Section 5 introduces three
case studies constituted by specific pairs of drug and adverse event, which will serve as examples for our new
methodologies. In section 6 we present our results. We first applied the four well-known signal detection
methods to a particular case study and exemplified the importance of stratification to control for demograph-
ics. Secondly, we show the results of applying our new longitudinal signal detection methods to 3 case studies.
The last part in this section concerns a simulation study. Finally, we wrap up with our conclusions and future
work. All the analyses performed in this paper were done using available SAS software.

2 Description of the AERS Database

The data that we have used throughout this research is a subset of the Adverse Event Reporting System
(AERS) database, which contains information of medical adverse events reported to the FDA. This database
is publicly available, and it is updated every 3 months, which means that the reports are grouped in quarters
per year. Data is available at the FDA website8 for the first quarter of 2004 through the first quarter of 2012,
and we focused on this specific subset of data corresponding to 33 quarters.

For each quarter, the AERS database consists of six major segments, including separate files for demo-
graphic, drug, reaction, patient outcomes, report sources, and therapy dates information. These datasets are
connected by a primary link key with a unique number that identifies the AERS reports, as can be seen in
Figure 1.

The demographic dataset contains 231,945 unique reports. Most of them are from United States (162,336),
Japan (11,199), Germany (7,313), France (7,022), United Kingdom (6,872), and Canada (6,015). Among these
reports, there are 169, 272 initial reports and 62, 673 follow up reports. The number of reports by females
exceeds the one for males by over 50,000 reports, and there are also unknown and unspecified genders reported.
Most of these reports were issued by consumers, followed by lawyers, and then medical doctors. 33,579 unique
drugs and 9,516 adverse events are included in the reports. In the outcome dataset, 161,252 unique reports
were filed. As a final outcome, 68,951 of cases were hospitalized, 29,138 cases of death, and 8,044 cases re-
ported as life-threading.

One part of our analysis was conducted only on the data pertaining to the first quarter of 2012, and will
appear in Section 6.1. The longitudinal part of the analysis will consider the information in all 33 datasets,
and is detailed in Section 6.2.

For the purpose of visualization, we constructed a drug-adverse event network for 1,000 combinations of
drugs and adverse events from the first quarter of 2012 of the AERS database (Figure 2). The network was
drawn with the open source software Cytoscape9. The nodes represent both drugs and adverse events, while

8http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/AdverseDrugEffects/ucm082193.htm
9http://www.cytoscape.org
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Figure 1: AERS database description.

the edges denote the relationships between them.

3 Existing methods for signal detection

The objective of signal detection methods is to filter the dataset to try to obtain evidence of potential asso-
ciations between drugs and adverse events that were not known before, by providing a measure of how rare
or common a particular combination is. Disproportionality analysis methods comprise the most widely used
class of analytic methods for signal detection in SRSs. These methods quantify the extent to which a given
condition is “disproportionally” reported with a given drug , compared to what would be expected (a control).
In other words, an observed/expected ratio of probabilities or cell counts is obtained.

Considering the limitations of the databases mentioned above, it is clear that there is no real “control
group”. That is, since all the reports come in a voluntary basis, it is impossible to know how many people
were exposed to the drug, how many people actually experienced an event, or even how many people experi-
enced a particular event after taking a specific drug. This gives rise to a big complication in the quantification
of the rarity of an adverse event, since without the total exposures it is difficult to evaluate the importance of
its occurrence. To put this in terms of the mentioned disproportionality methods, the expected counts cannot
be computed directly for any drug-adverse event pair.

The existing methods try to compensate for the fact that it is impossible to quantify a drug-adverse event
rate directly, by using all other drugs and all other events in the dataset as a control (or background noise)
against which to compare. Therefore, they focus on low-dimensional projections of the data, particularly
2-dimensional contingency tables, of the form shown in Table 1. The difference between the methods is the
way in which the expected counts are modeled.

The most commonly used methods are the proportional reporting ratios (PRR), reporting odds ratios
(ROR), the multi-item gamma Poisson shrinker (MGPS), and the Bayesian Confidence Propagation Neural
Network (BCPNN). PRRs and related measures based on 2x2 contingency tables are currently used in routine
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Figure 2: Network representation of drug and adverse event relationships in AERS database

pharmacovigilance activities by the Medicine Control Agency (MCA) in the UK. MGPS is currently used by
the FDA, and BCPNN is employed by the World Health Organization (WHO)[7]. We give a brief description
of these methods in the following sections.
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AEj = Yes AEj = No
Drugi = Yes n00 n01

Drugj = No n10 n11

Table 1: Typical table for disproportionality analysis. AE stands for adverse event.

3.1 Proportional Reporting Ratio (PRR) and Reporting Odds Ratio (ROR)

The PRR is a very simple method inspired by the well-known relative risk calculation for contingency tables.
By just focusing on a specific drug-adverse event combination, and pooling the counts over all other drugs and
all other adverse events, it is possible to construct a 2x2 table as the one shown in Table 1. Then the PRR is
computed as

PRR =
n00/n0·

n10/n1·

where n0· = n00 + n01, and analogously for n1·.

The ROR is very similar to the PRR, except for the fact that it tries to correct for certain kinds of
under-reporting. It is calculated from the same 2x2 table (Table 1) as the PRR.

ROR =
n00n11

n01n10

The interpretation of these quantities is that they measure how much more frequently the specific event is
reported with the chosen drug, than with all other drugs.

It is important to keep in mind that whenever the count n00 is very small (which often happens in this
type of datasets), this leads to substantial variability which increases the uncertainty about the true value of
the measure of association to be computed. A known problem with PRR and ROR is that they do not address
this issue, that is, there is no way to quantify the variability associated to this “sampling” variation. The
two Bayesian methods that we will proceed to describe improve upon the methods based on relative ratios by
addressing this issue, and provide solutions by considering all the reported drug-adverse event combinations
at the time.

3.2 Bayesian approaches

The multi-item gamma Poisson shrinker (MGPS) and the Bayesian Confidence Propagation Neural Network
(BCPNN) are Bayesian methods that aim to express possible associations between the reporting of events and
drugs in terms of a function of the ratio of observed to expected frequencies mentioning drug i and adverse
event j, nij/Eij . That is, they look at a specific drug-event combination and try to quantify how “interestingly
large” the number of reports is compared to what would be expected under the assumption of drug and event
being statistically independent [7]. The expected counts Eij are computed as

Eij =
ni·n·j
n··

where

ni· =
J∑
j=1

nij , n·j =
I∑
i=1

nij , n·· =
I∑
i=1

J∑
j=1

nij

are the total counts corresponding to drug i, the total counts corresponding to adverse event j, and the total
number of reports, respectively. Throughout this document we denote the total number of drugs in a partic-
ular database by I, and the total number of adverse events by J .
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In particular, the measure of disproportionality for a specific drug-adverse event combination is the infor-
mation criterion (IC), computed as

ICij = log2

(
nij
Eij

)
which is just the logarithm base 2 of the PRR.

3.2.1 Multi-item Gamma Poisson Shrinker (MGPS) - EBGM

In this method [5], each observed count for drug-adverse event pair is modeled as a draw from a Poisson
distribution with varying unknown means. The means are considered to be random with a common prior
distribution: a mixture of two gamma distributions (which have in total 5 parameters). In addition, an
Empirical Bayes procedure is used to estimate the 5 parameters from the prior. In short, the model is

nij ∼ Poisson(µij)
µij = λijEij

λij ∼ Mixture Gamma

Finally, the posterior distribution of λij is obtained, and the EBGM, defined as the geometric mean of the
empirical Bayes posterior distribution of the true relative report ratio, is reported. This method is known as
the Gamma Poisson Shrinker (GPS). As previously mentioned, the Bayesian methods try to account for the
“sampling” variability in the reported counts, and studies have shown that the EBGM method does well even
with very small n00 (even 1 or 2).

A variant of the above method, the Multi-Item Gamma Poisson Shrinker (MGPS), allows for higher order
combinations of drugs and events that are significantly more frequent than their pairwise association would
suggest.

3.2.2 BCPNN

The BCPNN method [4] is similar to EBGM, but uses a multinomial model instead of a Poisson for the counts,
and calculates all cell counts for all potential drug-adverse event combinations in the database (not just those
that appear together in at least one report). The fact that it is embedded in a neural network gives it the
ability of to handle large data sets, and is robust to missing data.

In this case there is actually a proper prior (not estimated from the data as in the empirical Bayes ap-
proach), which is taken from the family of Beta distributions. Again a Bayesian procedure is used to obtain
the posterior distribution of the IC between specific drugs and events present on the same report, as well as
the 95% confidence intervals. In particular, an IC with a lower 95% confidence interval bound that increases
with sequential time scans establishes a criterion for signal detection.

3.3 Discussion of the methods

Although these methods have widespread use as we have previously mentioned, we wish to highlight a few
issues that became apparent when studying them in detail. We hope this will help practitioners to stay aware
of the advantages and limitations of the existing methods, and to take them into account for interpretation of
the results or development of new techniques.

The PPR and ROR are methods that are easily interpretable by practitioners because of the analogies
that can be drawn to relative risks in epidemiology, and they simplify the problem to 2×2 contingency tables.
If we consider that the dataset comprises I different drugs and J different adverse events in total, one would
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essentially need to construct at total I × J tables of size 2 × 2 in order to analyze all the possible pairwise
drug-adverse event combinations with these methods. But in this case, we run into a multiple testing scenario:
we are running I×J tests on the same database without adjusting the family-wise error rate to account for the
multiple comparisons, which will result in a large number of spurious relationships (or false-positive signals)
that appear just by chance. That is, with millions of ratios being calculated, large ratios will inevitably appear
just by chance, without necessarily meaning that there might be some interesting association. It is difficult
to think how to incorporate an adjustment into the analysis, because the well-known methods such as the
Bonferroni correction will potentially be too conservative, since the number of comparisons is huge (I and
J are very large, and for example in our Case Study 1, we had an average of 2.7 million drug-adverse event
combinations to look into).

Another issue that affects PPR and ROR is a small n00 count in the 2× 2 table, as previously discussed.
Analogously, a large count of a particular kind of adverse event report can potentially inflate the denominator
for a specific drug, and reduce the sensitivity in detecting other signals associated with that drug. Finally, in
comparing the frequentist methods (PRR and ROR) to the Bayesian methods, the first don’t take into ac-
count the variability associated to the estimation of the measures of disproportionality, whereas the Bayesian
methods do, by computing the entire posterior distribution.

In terms of the BCPNN, it seems to us that there is no available way to adjust for any stratification vari-
ables. As we will exemplify in our Section 6.1, stratification is important in order to control for demographic
characteristics of the subjects, that is, in order to avoid spurious associations due to bad specification of the
population that takes the drug.

The MPGS method seems to be very flexible in terms of its ability to potentially include drug-drug inter-
actions (by creating a “new” drug which combines the counts for the two drugs included in the interaction),
or even higher level interactions. The limitations of this ability would come in terms of the computational
challenge of increasing the number of parameters to be estimated.

As we mentioned previously, in the MPGS-EBGM method, the estimate is a summary of the empirical
Bayes posterior distribution of the true relative report ratio. Shrinkage towards the mean is a nice property
derived from the fact that we are using an empirical Bayes approach to estimate the parameters of the prior
distribution. What this method does is that it shrinks the calculated ratios in cases where the uncertainty is
large (that is, when the variance in the estimate of the ratio is large), as would happen in the case of a really
small n00 count. When this count is in the range of say, 10 to 20, there would be only a slight shrinkage;
for large counts (e.g. over 100) there would be no shrinkage. This helps mitigate the peaks that would be
obtained using a method like PRR, and therefore these estimates more stable in compareison.

All the methods suffer from the fact that all the calculations that are done are very dependent on what
drugs and adverse events are included in the database. This is, we believe, partially inherent to the problem
at hand since the whole issue is that there is no control group to compare the specific drug-event pair to,
and so the “other drugs” and “other adverse events” that are used in the relative calculations will have a
deep impact on the results. For example, if there are drugs that are included in the “control group” which
have very high signals for the event of interest, the denominator would be inflated, which in turn would dilute
the association that is the target of the particular analysis. Maybe some effort should be put into trying to
define what group of drugs or events should be included in a specific analysis. This might include some sort
of grouping by defined similarities, for example, or just following the same group of drugs across the different
time periods.

As we have commented in several occasions, it is important to keep in mind that none of the conclusions
that we obtain with these disproportionality methods should be interpreted as causal since there is no properly
controlled randomized experiment involved. These methods can be useful as detectors of possible association
between specific drug-adverse event combinations, that is, signals that can be identified for further study in a
medical context.
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4 Longitudinal signal detection

In this section we look at the historical score for a particular drug-adverse event combination. This serves
as a reference for the physicians to judge whether the current score is off the track. We analyze the three
drug-adverse event combinations that will be described in more detail in Section 5, namely Avandia & my-
ocardial infarction, Finasteride & sexual dysfunction, and Thiazolidinedione & macular edema, from the first
quarter of 2004 to the first quarter of 2012 (33 quarters overall). An EBGM score is calculated for each
case, for each quarter. We decided to focus on the analysis of the EBGM scores because of its shrinkage and
smoothness properties discussed in Section 3. We are particularly interested in whether there was a signal of
disproportionality from the trend in the past. In this section, we present the methods that were developed in
order to deal with this longitudinal analysis, and in Section 6.2 we discuss the results of applying them on our
three case studies.

Our starting point is a time series of scores (say EBGM) for a specific drug-adverse event combination,
which we denote by {Xi}Ni=1, where i corresponds to the time period and N is the total number of time periods
considered. If one were to plot it, by simply looking at the curve one would be able to spot certain spikes that
might be deemed as signals. To conduct a more rigorous longitudinal analysis, we propose three novel ways
to quantify sudden spikes that may potentially be signals: a method based on percent changes across time, a
parametric approach and a non-parametric approach.

4.1 Method 1: Percent change in disproportionality score, relative to moving
average

One way to quantify a sudden spike in a time series of disproportionality scores is to look at percent change
in the score relative to the past. We can compare the score to a moving average of, for example, 1 year of
scores. Percent change would thus be calculated as change relative to the average of the past 4 quarters:

Percent change = Xi

(
Xi−1 +Xi−2 +Xi−3 +Xi−4

4

)−1

− 1

Percent changes above some value, say 100% (that is, a doubling in value) may be considered worthy of
investigation.

4.2 Method 2: Parametric approach

For the parametric approach, assume that the time series data {Xi}Ni=1 comes from a Gaussian distribution.
If no trend occurs, {Xi}Ni=1 would be independent observations from a N(µ, σ) distribution. If there is a
upward signal at time point τ + 1, then {Xi}τi=1 ∼ N(µ, σ) independently, and Xτ+1 would fall in the upper
tail of Gaussian distribution. To implement this method, we assume that no signal occurs for the first four
time points (which are used as a baseline). Starting from the fifth time point, we decide whether the current
value is within two standard deviations of the mean. If so, we include that time point into the baseline, and
re-estimate the mean and variance for the Gaussian distribution for further detection. If not, we report a
signal. This sequential procedure continues until a signal is reported, that is, until the current time point
is outside two standard deviations of the mean, where the mean and standard deviation are both estimated
based on all the previous values.

4.3 Method 3: Nonparametric approach

The third algorithm we propose is the bootstrap approach. The key idea is as follows: if no trend occurs, we
would expect the slope from the ordinary least squares (OLS) fit to be close to zero. On the other hand, if an
upward trend occurs, we would expect the slope to be positive. To implement the method, again assume that
the first four points do not show any trend. Starting from the fifth time point, we compute the OLS slope using
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all the previous points and the current point. Its value is recorded as our test statistic. Next, we bootstrap
from the previous points, say 10000 times, and compute the OLS slope each time. The p-value is calculated
by computing the proportion of simulated slopes that are greater than our slope statistic. If the p-value is
small, say less than 0.05, evidence exists that an upward trend is highly likely to occur. On the other hand, if
the p-value is relatively large, we do not have evidence of an upward trend, and we include the current time
point in the baseline group and proceed to check the next time point. This sequential procedure continues un-
til a p-value is under a pre-defined threshold. The most commonly used threshold is a 0.05 level of significance.

In the end, these three methods may serve the following two purposes. First, they can be used to examine
whether there was a signal in the past (for example, in a retrospective study to decide whether there was
enough information to have captured certain signals before the public health situation became more difficult).
Secondly, they can be used sequentially to determine whether the current time point is a signal or not. None
of these methods detect multiple signals, which is an issue that generates another direction for future research.

5 Case studies

For each of our case studies, the goal is to examine the AERS data for evidence of reporting disproportionality
in the given adverse event for patients taking the drug in question. In our first two case studies, the FDA
issued a warning once the drug was on the market for a significant period of time10. Is is possible to detect a
signal in the AERS data prior to the time of the FDA warning? Using the AERS data, how early could this
potential link have been recognized? In our third case study, we examine an Adverse Event/Drug combination
that has been documented in a recently published clinical trial, but has not resulted in FDA action. Can we
find evidence in the AERS data to support the findings of this trial? Based on what we discover, can we make
a recommendation to regulators about adding a warning?

5.1 Case Study 1: Avandia and Myocardial Infarction

The diabetes drug Avandia (Rosiglitazone) went on the market after FDA approval in 1999. The drug became
popular; sales of the drug from GlaxoSmithKline peaked in 2006 at $3.2 billion in the United States that year
[15]. In May 2007, the FDA issued a safety alert for the drug due to potential increased risk of heart attack.
In 2010, the drug was suspended from the European market and the FDA severely restricted its use [15].
Pre-market clinical trials of Avandia showed no evidence of increased risk of heart attack; however, 8 years
after the drug was approved, the FDA found enough evidence to lead to a warning contraindicating high risk
patients and shortly thereafter, the drug was all but taken off the mass market.

There are two goals related to this case study. The first is to exemplify, via an analysis of the data for
the first quarter of 2012, the consequences of stratification by age and gender. These results are presented in
Section 6.1. The second goal is to analyze AERS data prior to the 2007 FDA warning for signal detection.
We will apply our proposed trend analyses and the results are summarized in Section 6.2.1.

5.2 Case Study 2: Propecia and Sexual Dysfunction

Finasteride is a drug marketed as Propecia to treat male pattern baldness and Proscar to treat englarged
prostate. Proscar went on the market in 1992 and Propecia in 1997. Pre-market clinical trials showed small
but significant amount of sexual dysfunction [11]. The results of these trials were reported on the original
label, however, in April 2011 and again in April 2012, the FDA revised the drug label to include new warnings
that these drugs carry a potential risk of long-term sexual dysfunction. The goal in this case study is to look
for evidence of disproportionality in reporting of sexual side effects in patients who reported taking Propecia
prior to April 2011, and the results are discussed in Section 6.2.2.

10All specific drug label information below was retrieved from the Drugs-at-FDA website:
http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm. Leads to possible drug/AE combinations were found
at the Pharmaceutical Drug Litigation Updates website: http://www.drug-injury.com/drug injury.
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5.3 Case Study 3: Thiazolidinediones and Macular Edema

Thiazolidinediones are a class of diabetes drugs that include Avandia (Rosiglitazone) and Actos (Pioglitazone).
Macular Edema is an eye disease sometimes seen concurrently with diabetes; it is the leading cause of blindness
in in diabetes patients. In July 2012, a retrospective cohort study of 103, 368 diabetic patients was published
which found an increased risk of macular edema at 1-year and 10-year follow-up evaluations. Prior to this study,
others that have investigated this link have found no causal evidence [10]. Post-market spontaneous reporting
of Macular Edema is listed on the Avandia label; however, the FDA has not issued any warning regarding this
particular drug/AE combination. The goal for this case study is to look for evidence of disproportionality in
reporting of macular edema in patients who reported taking Avandia or Actos, and the results can be found
in Section 6.2.3.

6 Results

6.1 Case Study 1: Avandia vs. Myocardial Infarction.

6.1.1 Description of datasets

Avandia has been brought under the scanner of the United States Food and Drug Administration (US FDA)
in the context of adverse events related to Common Cardio Problem. FDA suspected that this drug yielded
an unexpectedly large amount of heart related problems, thus issued a warning in the fourth quarter of 2007.

Is Avandia really that risky? By analyzing the retrospective data of the first quarter of 2012 that is publicly
available in the US FDA Adverse Events database, it seems that Avandia deserves tremendous attention from
physicians and drug manufacturers.

We begin by analyzing Avandia and each of the adverse events recorded in the database. There are 1136
Avandia-related adverse events. For each of the Avandia-related adverse event, we essentially compute its
disproportionality, defined as observed counts/expected counts. Intuitively, if the observed count for a par-
ticular Avandia-adversed event pair is way higher than its expected count, it sends out alarms for investigation.

To serve this purpose, four methods are being used, namely PRR, ROR, BCPNN and EBGM. All of the
four methods are based on analyzing the 2× 2 contingency table(Table1) for each Avandia-adverse event pair.

After each pair is scored using those four methods, we rank the scores from highest to lowest. Results show
that the four methods are in general consistent in the sense that four methods give similar ranking. Below
are the top 10 Avandia-adverse related events rankings according to EBGM.

Surprisingly, all of these adverse events are cardio related problems, indicating a strong warning that in-
vestigation be taken.
Moreover, we analyze Avandia-related adverse events by age and gender. We bracket age by classifying people
with age 65 as old people, and age below 65 as young people (though most people in that group are mid-aged).
This stratification is instructive because it may be that certain adverse events needs to be alerted for a specific
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subgroup, while it is not a concern for another subgroup. In this study, we create subgroups of old people,
young people, female and male. We also dig further by looking at old female, old male, young female and
young male. All four scores are calculated and compared. We define it as our ungrouped dataset.
We also conduct another interesting study by subsetting all the drugs that were reported common cardio
adverse events. This excludes irrelevant drugs in the study, and compares Avandia with all other drugs as-
sociated with common cardio adverse events. The group of common cardio adverse events is defined as the
top 10 cardio related adverse events. By repeating the same stratification in the last paragraph, we create
subgroups of old people, young people, female and male, old female, old male, young female and young male.
All four scores are calculated and compared. And we define this as our grouped dataset.

The following tables and plots will give us more details and results.

6.1.2 Results of the analysis for the first quarter dataset of 2012 from AERS

• Combination of Avandia and cardiac disorder adverse event in the ungrouped dataset.

The four association measures - EBGM, IC, ROR, and PRR - of the combination of Avandia drug and
cardiac disorder adverse event are computed using data from the first quarter of 2012. First of all, we deleted
the pairs which have the counts that are less than 10. For the specific drug Avandia, there are 106 related
adverse events. After stratifying by gender, there are only 39 related adverse events for female and 56 related
adverse events for male. Only stratifying by age, there are 26 related adverse events left for old people while
40 for young people. Finally, we also stratified the dataset by gender and age at the same time, obtaining just
13 related adverse events for females under the age of 65, 12 for females over the age of 65, 13 for males over
the age of 65, and 25 for males under the age of 65. We choose one cardiac related AEs (cardiac disorder) to
show how the AE acts differently in different strata.

Figure 3: Avandia Use and Common cardiac disorder

Figure 3 shows that the scores calculated for people under 65 years of age are higher than those for people
over 65 years old, and there is a slight difference between the male and female. The last group which is
stratified by gender and age also shows that females under 65 years of age and males under 65 years of age
have much larger scores than the females and males over 65 years old. The picture indicates that young people
may be more prone to getting a cardiac disorder event than the older people when they take Avandia at the
same time and same dose. This difference is not very clear between males and females. This stratification
shows that probably an association with younger age groups is the main reason for the increase the total score
as obtained from the non stratified database.

• Combination of Avandia and cardiac disorder adverse event in the grouped dataset.

For the result of the ungrouped dataset, we found out that 7 out of the top 10 high score Avandia-AE
pairs are cardiac related, hence we are assuming that Avandia is more likely related to cardiac adverse events.
It is reasonable for us to see how the score be changed in different strata. Therefore we chose the top 10
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high Avandia related cardiac adverse events, and take them as a group named “COMMON CARDIO”, and
we keep the rest AEs as the same. Again, we deleted the pairs which have the counts that are less than
10. So in the grouped dataset, there are 98 adverse events in total. And stratified by gender, there are 23
related adverse events for female and 51 related adverse events for male. And stratified by age, there are
24 related adverse events for old while 25 for young. And we also stratified the dataset by gender and old,
so there are 13 AEs for young female, 12 for old female, and 13 for old male and 23 related AEs for young male.

Figure 4: Avandia Use and Common cardiac disorder

For each group, we used four methods to get the score (EBGM IC ROR and PRR). We choose the
“COMMON CARDIO” AE to see how the AE acts differently in different strata. Figure 4 shows that the
young people have a higher score then the old people; and there is a slight difference between the gender
groups; the last group which is stratified by gender and age also shows that young female and young male
have much larger scores then the old female and old male. And RPR and ROR score of young female are
much larger than the score for young male. The plot indicates that young people may more likely to have a
cardiac disorder than the old people when they take Avandia. But the difference is not very obverse between
male and female. So it probably the young people, especially young female, that increase the total score.

• Summary. From the two groups of dataset, the scores of the grouped AE dataset are higher than the
scores of the ungrouped AE dataset. we get pretty much the same result, that is young people are
more likely to have a cardio related adverse event compare to old people while there is little difference
between male and female. Also, by comparison, the difference between EBGM, ROR, and PRR for the
whole dataset group is less than the difference for the “young” group which suggests that examining the
data by different demographic factors, such as age and gender, would lead to better results of detecting
signals of drugs.

• Limitations and future directions: This study suffers from several limitations. First of all, we do not have
the BMI for each patient. BMI may be an important factor to stratify. Second, the data is a collection
of spontaneous response from physicians and patients, which may suffer from sampling bias. Third, it
would be better if drugs are classified, for example, by biological component and chemical component.
Studying how these two types of drugs relate adverse events would be an interesting and meaning topic.
Lastly, it might be worthwhile to include all the drug-adverse event pairs in the ranking.

6.2 Time trend analysis

6.2.1 Case Study 1: Avandia and Myocardial Infarction

The quarterly AERS data allows us to analyze disproportionality measures longitudinally. Here we plot dis-
proportionality measures for all time points preceding the issue of the FDA warning on Avandia regarding
heart attacks.

The four methods produce very similar results. The only noticeable difference is that he EBGM does not
spike as high in 2006 Q4, perhaps because this measure is less sensitive to small changes in the number of
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Figure 5: Myocardial Infarction linked to Avandia Use

drug/AE pairs reported (i.e. small changes in the number n00).

The FDA warning was issued after the first quarter of 2007. With the benefit of hindsight we can interpret
the spike in the fourth quarter of 2006 as a signal. Indeed this is consistent with what we see in the plot;
before 2006 Q4, the disproportionality rates hover around 1 (no disproportionality) and then in 2006 Q4, they
suddenly double.

For reasons discussed earlier, we pick the EBGM score to use in our longitudinal analysis. We employ
our methods of longitudinal data analysis on EBGM score with the results in 2. The percent change and
deviation from the mean methods successfully identify 2006 Q4 as the first time point to produce a signal; the
non-parametric trend method does not identify a signal until 2007 Q2. Notice that all three methods produce
results starting in 2005, that is, only after 4 initial time points. At least 4 time points are needed to calculate
baseline statistics from which measures of change are determined.

6.2.2 Case Study 2: Propecia and Sexual Dysfunction

In the Finasteride/Sexual Dysfunction case study, the 4 disproportionality methods produce different results.
The PRR and ROR scores overlap almost precisely, and they are both more sensitive to changes in number of
reported drug/AE pairs, hence they produce dramatic spikes. The EBGM and IC methods follow the same
trend as the frequentist methods, but produce smoother curves.

Again, we choose EBGM scores for further investigation. The plot of EBGM score over time shows a few
spikes that may potentially be signals: 2008 Q3, 2010 Q1 and 2011 Q3 stand out to the naked eye. The FDA
added sexual dysfunction to the Finasteride label after 2011 Q1 so we are most interested in detecting signals
at 2008 Q3 and 2010 Q1.

The percent change method detected two signals prior to the one we expect to see at 2008 Q3 (see 3.
The percent change is 169% at 2006 Q2 and 220% at 2006 Q4. This algorithm successfully detected 2008 Q3
(249%) and 2010 Q1 (144%), as well as the last three time points on the plot (283%, 190%, 179%).
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Figure 6: Sexual Dysfunction linked to Finsteride Use

Figure 7: Sexual Dysfunction linked to Finasteride Use
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Time Method 1 (% change) Method 2 (p-value) Method 3 (p-value)
2005Q1 17% 0.66 0.98
2005Q2 0% 0.94 0.98
2005Q3 -11% 0.52 0.76
2005Q4 -32% 0.31 0.55
2006Q1 0% 0.91 0.52
2006Q2 -7% 0.56 0.42
2006Q3 -8% 0.46 0.23
2006Q4 88% 0.02 0.88
2007Q1 -47% 0.13 0.48
2007Q2 386% <0.001 <0.001

Table 2: Avandia/Myocardial Infarction: Longitudinal signal detection results (EBGM)

The parametric method successfully detected 2008 Q3 and 2010 Q1 as well as the last three time points
(p<0.001). It did not detect any other time points. Finally, the non-parametric trend method only detected
a signal in 2009 Q1, two time points after the initial spike in 2008.

To summarize, in this case we see that, while the percent change method successfully detected the signals
we expected, it was too sensitive to small changes in score and detected two signals erroneously. The non-
parametric trend test lagged behind and only detected a signal two time points after one occurred and the
parametric method successfully detected the signals we expected and no others.

6.2.3 Case Study 3: Thiazolidinediones and Macular Edema

In the Thiazolindinedione/Macular Edema case study, we see again that while the 4 disproportionality meth-
ods follow the same trends, they produce different results that are due to the PRR and ROR scores being
more sensitive to small changes. Overall, we see more variability over time in this drug/AE pair, with scores
suddenly spiking, even on the smoothest curve (EBGM). This drug/AE pair presents the most challenging
scenario of signal detection of the three cases.

Recall that evidence of the link between Thiazolidinediones and Macular Edema was published very re-
cently and the FDA has not made a recommendation nor added a warning regarding this link. Any signals
detected in this data could potentially be worth investigation. To the naked eye, 2006 Q1, 2010 Q1 and 2010
Q3 stand out as potential signals. 2004 Q2 is also a spike, but will not be detected by our methods as it in
the set of first 4 measures and must be used to calculate baseline statistics.

2006 Q1 is detected as a signal by the percent change method (678%) and the parametric method (p<0.001),
but not by the non-parametric trend method. The non-parametric trend method picks up 2006 Q4 as a signal,
again a few time points behind.

We note here that the non-parametric trend method, while not good at picking up single time point spikes,
works well to detect signals where several time points in a row have an elevated score compared to the past,
as in 2006 Q1-Q4 here.

2010 Q3 is detected by both the percent change method (235%) and the parametric method (p<0.001).
2009 Q4 is only detected by the percent change method (166%). For this time point, we cannot judge whether
the sensitivities of percent change and deviation from the mean are too high or too low, since we can only
speculate as to whether this time point represents a ’real’ signal.
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Figure 8: Macular Edema linked to Thiazolidinedione Use

Figure 9: Macular Edema linked to Thiazolidinedione Use
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Time Method 1 (% change) Method 2 (p-value) Method 3 (p-value)
2005Q1 5% 0.95 0.46
2005Q2 6% 0.78 0.58
2005Q3 -53% 0.39 0.43
2005Q4 -56% 0.33 0.27
2006Q1 84% 0.25 0.14
2006Q2 169% 0.58 0.27
2006Q3 33% 0.45 0.24
2006Q4 220% 0.23 0.53
2007Q1 23% 0.85 0.62
2007Q2 55% 0.26 0.86
2007Q3 -27% 0.86 0.91
2007Q4 41% 0.17 0.69
2008Q1 -90% 0.18 0.88
2008Q2 6% 0.73 0.95
2008Q3 249% <0.001 0.17
2008Q4 53% 0.09 0.11
2009Q1 75% 0.02 0.02
2009Q2 -29% 0.56
2009Q3 -71% 0.61
2009Q4 -79% 0.41
2010Q1 144% <0.001
2010Q2 -15% 0.89
2010Q3 106% 0.04
2010Q4 19% 0.22
2011Q1 56% 0.01
2011Q2 29% 0.05
2011Q3 283% <0.001
2011Q4 190% <0.001
2012Q1 179% <0.001

Table 3: Finasteride/Sexual Dysfunction: Longitudinal signal detection results (EBGM)

By carefully observing the time point at which a signal was detected, we find interestingly that the boot-
strap approach does not detect a signal as fast as the parametric approach. This is mainly due to the nature of
non-parametric bootstrap: by having fewer assumptions, we lose efficiency. On the other hand, this conserva-
tiveness gives more reliable results. The parametric approach, however, detects a signal quickly, but it suffers
when the assumption may not be valid and is more likely to give false signals than the bootstrap approach.

6.3 Simulation

In this section, we show attempt numerical experiments of the approaches listed above in Section 3 using sim-
ulated data. Because the uncertainty and complexity of the real data described previously is very challenging,
a more clear insight could potentially be obtained through simulations where the truth is known. This is
especially important because there is no gold standard for signal detection techniques in the literature. In
addition, little work has been conducted regarding simulation in the pharmacovigilance field. Three recent
papers proposed simulation of data generation processes but with very different philosophies [13], [14], [3]. In
our case, we address this issue in a different way with many interesting outcomes.

18



Time Method 1 (% change) Method 2 (p-value) Method 3 (p-value)
2005Q1 -70% 0.58 0.66
2005Q2 -9% 1.00 0.75
2005Q3 28% 0.77 0.6
2005Q4 -34% 0.58 0.55
2006Q1 678% <0.001 0.52
2006Q2 53% 0.44 0.42
2006Q3 96% 0.10 0.15
2006Q4 61% 0.07 0.04
2007Q1 -54% 0.96
2007Q2 -59% 0.74
2007Q3 10% 0.64
2007Q4 -39% 0.85
2008Q1 -83% 0.31
2008Q2 -1% 0.83
2008Q3 -70% 0.38
2008Q4 24% 0.73
2009Q1 -62% 0.35
2009Q2 61% 0.87
2009Q3 44% 0.77
2009Q4 166% 0.42
2010Q1 30% 0.90
2010Q2 53% 0.43
2010Q3 235% < 0.001
2010Q4 -49% 0.97
2011Q1 -52% 0.86
2011Q2 -41% 0.96
2011Q3 -42% 0.97
2011Q4 -32% 0.68
2012Q1 -43% 0.56

Table 4: Thiazolidinedione/Macular Edema: Longitudinal signal detection results (EBGM)

6.3.1 Data generation

Unlike previous work by Ahmed, et al. [3], which suggests generating data in terms of number of events, our
starting point is to generate data in terms of the patient’s reporting mechanism.

We assume the distribution of one adverse event AEj , j ∈ {1, · · · , J} from a patient’s report follows a
Bernoulli distribution with success probability pAEj . The probability pAEj in the Bernoulli distribution for
patient N is determined by the following equation:

pAEj
(N) = Prob(AEj |patient N) =

1
e−(β0+β1x1+...+βIxI) + 1

(1)

where xi ∈ {0, 1}, i = 1, . . . , I is an indicator for whether the patient is using drug i. Let βi, i ∈ {1, · · · , I}
denote the coefficients of the drug effect to a particular AE. The larger value of βi, the higher the effect drug
i has on AEj . Let β0 denote the constant, which could be viewed as the background noise in the simulation.

Instead of directly generating counts for each drug-event combination, we first generate the patient reports,
each with a number of drugs and AEs. The counts of each drug-event combination will then be calculated
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from the patient’s report.

For all simulations, we consider the number of drugs to be J = 4, and I = 4 the number of AEs. We will
generate information for 10, 000 patients. Our simulation study consists of the following scenarios:

CASE 1. The reporting of adverse events are completely random, and independent with any possible factors.
Without loss of generality, we assume AEj , j ∈ {1, · · · , J} has 50% probability to appear in a patient’s report.

CASE 2. The chance of appearance of AEj , j ∈ {1, · · · , J} depends on the Bernoulli distribution described
in (1). In CASE 2, we fix β0 = −2.2, and the other coefficients are given in Table 5. In this setup, AE1 is
mainly dominated by drug1, AE2 is mainly dominated by drug2, AE3 is mainly dominated by drug1, drug2
and drug3, and AE4 is dominated by drug1, drug2, drug3 and drug4.

β1 β2 β3 β4

AE1 2.00 0.00 0.00 0.00
AE2 0.00 2.00 0.00 0.00
AE3 1.50 1.50 2.00 0.00
AE4 1.50 1.50 1.50 2.00

Table 5: Coeffients in simulation CASE II.

CASE 3. In this case, we increase the first cell coefficient in the above table, and others remain the same
(Table 6). In this case, the influence of AE1 by drug1 increases from 37.75% to 78.58%. Compared to CASE

β1 β2 β3 β4

AE1 3.80 0.00 0.00 0.00
AE2 0.00 2.00 0.00 0.00
AE3 1.50 1.50 2.00 0.00
AE4 1.50 1.50 1.50 2.00

Table 6: Coeffients in simulation CASE III.

II, in CASE III the probability of the drug-event combination drug1 −AE1 is increased.

CASE 4. In this case, we increase every cell from Table 6, which means the counts of every drug-event
combination increases significantly (Table 7). In CASE IV, the probabilities of all counts have a very large

β1 β2 β3 β4

AE1 3.80 0.00 0.00 0.00
AE2 0.00 3.80 0.00 0.00
AE3 2.50 2.50 3.80 0.00
AE4 2.50 2.50 2.50 3.80

Table 7: Coeffients in simulation CASE IV.

jump.

For each individual case from the setup above, we generated 50 datasets. Then for each dataset we used
the four disproportionality methods described in Section 3 to obtain the PRR, ROR, EBGM, and BCPNN
scores for each drug-AE combination, and finally we calculated the mean and variance across the 50 datasets
(to account for simulation variability).
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6.3.2 Simulation results

Tables 8, 9, 10 and 11 in the Appendix show the results for CASE I, II, III, and IV, respectively. Every
drug-event combination is listed in the results table for the four drugs and four AEs under consideration.
Columns N00 through N11 are the corresponding cells in the 2 × 2 contingency table pictured in Table 1.
The columns EBGM, IC, PRR, and ROR correspond to the measures of disproportionality calculated for each
drug-adverse event combination through each of those four methods, and are shown here together with their
standard deviation.

In Table 8, since the assumption for the simulation was that adverse events and drugs are reported com-
pletely at random and independently, the values of EBGM all equal one for every drug-event combination.
Similar results occur for the other three methodologies: IC, PRR, and ROR. There is no sign of dispropor-
tionality in our simulation CASE I, as expected.

In Table 9, the probability of drug1 − AE1 is around 30%. This is reflected from N00 in the first row.
However, the EBGM is still very close to 1, and PRR and ROR do not change significantly. In Table 10, the
EBGM, PRR and ROR are still close to 1, which indicates that all existing algorithms have difficulty detecting
the signal change, even when the probability changes dramatically. In Table 11, we obtained similar results for
EBGM, PRR and ROR, although they have a slightly higher volitality than the results before. Although the
counts in N00 have increased significantly compared to Table 9, the signal detection approaches have failed to
find these changes.

Through this simulation, we found some potential issues to look into regarding those existing approaches.

• None of these approaches take drug-drug interactions into consideration. The only difference between
CASE II and CASE III is that the probabilty of AE1 caused by drug1 changes from 37.75% to 78.58%.
In Table 10 and 11, the N00 value for drug1-AE1 changes from 1378.54 to 2273.06, which is an expected
increase since we increase the probability of occurrence. However, the N10 value for drug1-AE1 also
changes from 4072.8 to 7051.20, which is a big change and dilutes the signal. The reason behind this
phenomenon is that some patients take other drugs besides drug1; however, once they have an AE1
event, this event will also be counted into the “other drugs” effect even if the real reason is only drug1.

• The pool of all drugs and all AEs will affect the results greatly. In our simulation study, we only con-
sidered 4 drugs and 4 AEs. In this case, we have the same scale of values from N00 to N11. However,
in the AERS data, the total number of drugs and AEs are extremely large, and the consequence of this
is that the N00 number can be very small compared to N10, N01, and N11. For example, N00 could be
just 100, whereas N10, N01, and N11 are all in the millions. This case actually raises a very important
question, which is how to choose the pool of drugs and AEs against which to make the comparisons. Is
it more reasonable to try to include as many drugs and AEs as possible, or should we only select those
drugs and AEs that are known to be related (say because of their chemical content or because of the
known classification of events by system-organ class)?

• The probability of AEs appearing as a consequence of taking a specific drug in our simulation ranges
from 10% to 90%. However, in the AERS dataset the probability of AEs appearing is very low, say 1%.
All the existing approaches we studied fail to detect the disproportion in our simulation when the prob-
ability is high. We should direct more attention on how to assess the performance of those approaches
and how they compare to each other. The high chance of certain events appearing should be reflected
by those methods even in special situations, such as those fabricated in our simulation.
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6.3.3 Conclusions from simulation

The main purpose of our simulation was to try to compare and contrast the results that are provided by each
of the different methods. Since all the methods have different approaches and modeling techniques, we were
hoping that the simulation would shed some light into what those differences are, and maybe some of the
advantages and limitations of each. This could provide guidelines on what could be improved or modified to
get more significant results.

A comparison of all the disproportionality methods currently in use can be a valuable exercise, given
some sort of gold standard.We propose that in order to validate any results that may be obtained using
data mining techniques, a reference database with known drug-adverse event combinations is needed. The
information needed to construct this database could be obtained from studies published in the literature and
from information obtained through clinical trials. To the best of our knowledge, only a few examples exist in
the literature of databases constructed for this purpose (e.g. see [9]), and we strongly feel that this approach
should have a more widespread use.

7 Conclusions

In this project, we investigated the four most popular signal detection methods in the current literature: PRR,
ROR, MGPS, and BCPNN, and highlighted some of their advantages and limitations, as well as points for
improvement.

We also developed three novel algorithms for signal detection that incorporate the time factor into the anal-
ysis, allowing for a sequential determination of “importance of association” between specific drug-adverse event
pairs: one based in percent changes, a parametric approach, and a non-parametric approach. We conducted
analyses for three drug-adverse event combinations, namely Avandia & myocardial infarction, Finasteride &
sexual dysfunction, and Thiazolidinedione & macular edema. We found that the parametric approach is the
fastest to identify a potential signal, but it might be likely to produce more false positives. On the other hand,
the nonparametric approach seems to be more conservative (more evidence needs to accumulate in order for
it to detect a signal) which may make it more reliable, but it is slower than the parametric approach.

Additionally, we analyzed the Avandia & myocardial infarction pair for a specific period of time, highlight-
ing the importance of stratification on the demographic characteristics of the individuals reporting adverse
events. Finally, we did a simulation study to gain insight into the existing methods and to try to provide
a starting point for future studies, since we believe that validation of the performance of any data mining
algorithm is essential.

8 Future work and recommendations

There are many prospective lines of future work related to the signal detection problem. Some of them we
have already outlined in the paper, but here we make some additional recommendations.

The reliability of the dataset is a very important issue to keep in mind. To this respect, we believe that
much work can be put into homogenizing the names of the drugs and adverse events, and this can potentially
be addressed via language processing techniques. In addition, due to the importance of conducting stratified
analyses, more demographic covariates should be collected, as well as information related to the drug doses
and exposure times, which could be very valuable in dismissing spurious signals. We also propose including
other sources of information, such as results of clinical trials, epidemiological tracking information from the
CDC, or drug labels, in order to introduce some level of validation to the voluntary reporting system.

Other directions for future work lie in how to model interactions: both drug-drug interactions, and adverse
events with others. Some efforts have been made to introduce drug-drug interactions into existing methods
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by expanding the definition of “drug” to drug combinations [5]. There have also been attempts to use lo-
gistic regression to discover associations between drugs [12]. But these seem to suffer from the issue of high
dimensionality, so maybe clustering methods could be explored to this respect to reduce the dimensionality
of the data. In terms of the event associations, a possibility would be to include system organ class (SOC)
information into a hierarchical model as prior information.

A promising area of exploration lies in how to incorporate historical information into the modeling, since
a lot is learned in each time period and could be potentially used to estimate the background noise for future
time points.

Two final thoughts include taking into consideration the way in which the reports are submitted. First, it
could be promising to try to model the reporting mechanism and include it as prior information in a Bayesian
model, since in this way we take into account the uncertainty regarding the number of exposed individuals.
Secondly, weights could be added depending on the reliability of the agent submitting the report (clinicians,
patients, manufacturers), since we could have more confidence on the information provided by different sources.

In our opinion, there are several issues that remain problematic. One of them is the absence of a gold
standard against which to evaluate the performance of data mining and signal detection methods. Another
point for concern is the lack of validation and comparisons of the different methods.

Since there are no best practices or golden standard for signal detection, a great area of opportunity arises
for the development of analytical tools, but also for the misinterpretation of their results. It is important
to always keep in mind that no algorithm can replace the role of trained physicians, since signal detection
requires clinical judgement and knowledge of thresholds, but the methods can serve as initial indicators of the
possibility of associations between drugs and adverse events.

9 Appendix

Drug Event N00 N10 N01 N11 EBGM std IC std PRR std ROR std
drug1 AE1 2512.92 7505.46 7560.38 22496.18 1.00 0.01 -0.00 0.01 1.00 0.01 1.00 0.01
drug1 AE2 2503.66 7507.38 7522.04 22541.86 1.00 0.01 -0.00 0.01 1.00 0.01 1.00 0.01
drug1 AE3 2504.28 7509.60 7521.42 22539.64 1.00 0.01 -0.00 0.01 1.00 0.01 1.00 0.01
drug1 AE4 2506.58 7525.06 7519.12 22524.18 1.00 0.01 -0.00 0.01 1.00 0.01 1.00 0.01
drug2 AE1 2500.60 7517.78 7471.34 22585.22 1.00 0.01 0.00 0.01 1.00 0.01 1.01 0.02
drug2 AE2 2488.56 7522.48 7483.38 22580.52 1.00 0.01 -0.00 0.01 1.00 0.01 1.00 0.01
drug2 AE3 2487.06 7526.82 7484.88 22576.18 1.00 0.01 -0.00 0.01 1.00 0.01 1.00 0.01
drug2 AE4 2495.72 7535.92 7476.22 22567.08 1.00 0.01 -0.00 0.01 1.00 0.01 1.00 0.01
drug3 AE1 2516.66 7494.38 7556.64 22507.26 1.00 0.01 0.00 0.01 1.00 0.01 1.00 0.01
drug3 AE2 2521.66 7492.22 7551.64 22509.42 1.00 0.01 0.00 0.01 1.00 0.01 1.00 0.01
drug3 AE3 2522.06 7509.58 7551.24 22492.06 1.00 0.01 0.00 0.01 1.00 0.01 1.00 0.01
drug3 AE4 2493.68 7524.70 7510.32 22546.24 1.00 0.01 -0.00 0.01 1.00 0.01 0.99 0.01
drug4 AE1 2502.16 7508.88 7501.84 22562.06 1.00 0.01 0.00 0.01 1.00 0.01 1.00 0.01
drug4 AE2 2500.88 7513.00 7503.12 22557.94 1.00 0.01 0.00 0.01 1.00 0.01 1.00 0.01
drug4 AE3 2507.28 7524.36 7496.72 22546.58 1.00 0.01 0.00 0.01 1.00 0.01 1.00 0.01
drug4 AE4 2511.18 7507.20 7514.52 22542.04 1.00 0.01 0.00 0.01 1.00 0.01 1.00 0.01

Table 8: Simulation results for CASE I.
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Drug Event N00 N10 N01 N11 EBGM std IC std PRR std ROR std
drug1 AE1 1378.54 4072.80 7474.06 22023.86 1.00 0.01 -0.00 0.02 1.00 0.01 1.00 0.02
drug1 AE2 1357.76 4088.02 7349.08 22154.40 1.00 0.01 0.00 0.02 1.00 0.01 1.00 0.02
drug1 AE3 2688.20 8148.98 6018.64 18093.44 0.99 0.01 -0.01 0.01 0.99 0.01 0.99 0.01
drug1 AE4 3299.66 9915.30 5407.18 16327.12 1.00 0.00 0.00 0.01 1.00 0.01 1.00 0.01
drug2 AE1 1352.06 4099.28 7331.90 22166.02 1.00 0.01 -0.00 0.01 1.00 0.01 1.00 0.02
drug2 AE2 1344.94 4100.84 7339.02 22164.46 0.99 0.01 -0.01 0.02 0.99 0.01 0.99 0.02
drug2 AE3 2698.84 8138.34 5985.12 18126.96 1.00 0.01 0.00 0.01 1.00 0.01 1.00 0.01
drug2 AE4 3288.12 9926.84 5395.84 16338.46 1.00 0.01 0.00 0.01 1.00 0.01 1.00 0.01
drug3 AE1 1381.24 4064.54 7471.36 22032.12 1.00 0.01 0.00 0.02 1.00 0.01 1.00 0.02
drug3 AE2 2744.24 8092.94 6108.36 18003.72 1.00 0.01 -0.00 0.01 1.00 0.01 1.00 0.01
drug3 AE3 3348.58 9866.38 5504.02 16230.28 1.00 0.00 0.00 0.01 1.00 0.01 1.00 0.01
drug3 AE4 1359.52 4091.82 7346.34 22151.58 1.00 0.01 0.00 0.02 1.00 0.01 1.00 0.02
drug4 AE1 1361.84 4083.94 7344.02 22159.46 1.00 0.01 0.01 0.02 1.00 0.01 1.01 0.02
drug4 AE2 2705.90 8131.28 5999.96 18112.12 1.00 0.01 0.00 0.01 1.00 0.01 1.00 0.01
drug4 AE3 3278.60 9936.36 5427.26 16307.04 1.00 0.00 -0.01 0.01 0.99 0.01 0.99 0.01
drug4 AE4 1361.22 4090.12 7345.62 22152.30 1.00 0.01 0.00 0.02 1.00 0.01 1.00 0.02

Table 9: Simulation results for CASE II.

Drug Event N00 N10 N01 N11 EBGM std IC std PRR std ROR std
drug1 AE1 2273.06 7051.20 7292.50 22568.32 1.00 0.01 -0.00 0.01 1.00 0.01 1.00 0.01
drug1 AE2 1379.28 4105.66 8489.42 25210.72 1.00 0.01 -0.00 0.02 1.00 0.02 1.00 0.02
drug1 AE3 2765.98 8230.90 7102.72 21085.48 1.00 0.01 -0.00 0.01 1.00 0.01 1.00 0.01
drug1 AE4 3359.40 10019.60 6509.30 19296.78 1.00 0.00 -0.00 0.01 1.00 0.01 0.99 0.01
drug2 AE1 2373.54 6950.72 7566.10 22294.72 1.00 0.01 0.01 0.01 1.00 0.01 1.01 0.01
drug2 AE2 1398.18 4086.76 8541.46 25158.68 1.00 0.01 0.01 0.02 1.01 0.01 1.01 0.02
drug2 AE3 2784.62 8212.26 7155.02 21033.18 1.00 0.00 -0.00 0.01 1.00 0.01 1.00 0.01
drug2 AE4 3383.30 9995.70 6556.34 19249.74 1.00 0.00 -0.00 0.01 1.00 0.01 0.99 0.01
drug3 AE1 1332.50 4152.44 8233.06 25467.08 0.99 0.01 -0.01 0.02 0.99 0.01 0.99 0.02
drug3 AE2 2690.52 8306.36 6875.04 21313.16 1.00 0.01 0.00 0.01 1.00 0.01 1.00 0.01
drug3 AE3 3269.48 10109.52 6296.08 19510.00 1.00 0.00 0.00 0.01 1.00 0.01 1.00 0.01
drug3 AE4 2313.62 7010.64 7497.56 22363.26 0.99 0.01 -0.01 0.01 0.99 0.01 0.98 0.01
drug4 AE1 1374.98 4109.96 8436.20 25263.94 1.00 0.01 0.00 0.02 1.00 0.01 1.00 0.02
drug4 AE2 2755.76 8241.12 7055.42 21132.78 1.00 0.00 0.00 0.01 1.00 0.01 1.00 0.01
drug4 AE3 3366.82 10012.18 6444.36 19361.72 1.00 0.00 0.01 0.01 1.01 0.01 1.01 0.01
drug4 AE4 2364.04 6960.22 7504.66 22356.16 1.01 0.01 0.01 0.01 1.01 0.01 1.01 0.01

Table 10: Simulation results for CASE III.
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