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1 Introduction

The unified method of Feldman and Cousins [5] has attracted wide interest among high-

energy physicists since its appearance. It was originally recommended for problems with a

restricted parameter space, for example a normal mean that is known to be positive, and

called “unified” because it makes a natural transition from an one-sided confidence bound to

a two sided confidence interval. Only problems without nuisance parameters were considered

in [5]. Interest here centers on problems in which there is a nuisance parameter in addition to

the parameter of primary interest. Consideration of several examples reveal some interesting

differences (from the cases without nuisance parameters).

To describe the unified method and understand the issues, suppose that a data vector X

has a probability density (or mass function, in the discrete case) fθ,η where θ is the parameter

of interest and η is a nuisance parameter. For example, if a mass θ is measured with normally

distributed error with an unknown standard deviation, then θ is of primary interest and the

standard deviation of the measurement is a nuisance. Let L denote the likelihood function

L(θ, η|x) = fθ,η(x);

further, let η̂θ = η̂θ(x) be the value of η that maximizes L(θ, η|x) for a fixed θ; let θ̂ = θ̂(x)

and η̂ = η̂(x) be the values of θ and η that maximize L(θ, η|x) over all allowable values; and
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let

Λθ(x) =
L(θ, η̂θ(x)|x)

L(θ̂(x), η̂(x)|x)
. (1)

Then unified confidence intervals consist of θ for which Λθ(x) ≥ cθ, where cθ is a value whose

computation is discussed below.

For a desired level of coverage 1−α, a literal (and correct) interpretation of “confidence”

requires that Pθ,η[Λθ(X) ≥ cθ] ≥ 1 − α for all θ and η, where Pθ,η denotes probability

computed under the assumption that the parameter values are θ and η. Equivalently it

requires minη Pθ,η[Λθ(X) ≥ cθ] ≥ 1 − α for each θ. Thus, cθ should be the largest value of c

for which

min
η

Pθ,η[Λθ(X) ≥ c] ≥ 1 − α. (2)

For a fixed x, the confidence interval is then C(x) = {θ : Λθ(x) ≥ cθ}, and its coverage

probability

Pθ,η[θ ∈ C(X)] = Pθ,η[Λθ(X) ≥ cθ] ≥ 1 − α, (3)

by construction. Being likelihood based, unified confidence intervals are generally reliable,

even optimal, in large samples – for example [8] – but not necessarily so in small samples,

and unified confidence intervals have been criticized in that context – e.g. [9] and [10].

In some simple cases, it is possible to compute cθ analytically. This is illustrated in

Section 2 and 3. In other cases, one can in principle proceed by numerical calculation. This

requires computing Pθ,η[Λ(X) ≥ c] over a grid of (θ, η, c) values, either by Monte-Carlo or

numerical integration, and then finding the cθ by inspection, replacing the minimum in (2)

by the minimum over the grid. This is feasible if η is known or absent and was done by

Feldman and Cousins in two important examples. But if η is present and unknown, then

numerical calculations become unwieldy, especially if η is a vector.

One way to circumvent the unwieldy numerical problems, when η is present, is to use

the chi-squared approximation to the distribution of Λθ, as in [11], or a chi-squared approx-

imation supplemented by a Bartlett correction. Another is to use the hybrid resampling

method of Chuang and Lai, [1] and [2]. Generate and random variable X∗ from Pθ,η̂θ
and let

c+
θ = c+

θ (x) be the largest values of c for which Pθ,η̂θ
[Λ(X∗) ≥ c] ≥ 1 − α. Then the hybrid

confidence intervals consist of θ for which Λθ(x) ≥ c+
θ . This requires computation over a grid

of θ values, but not over η for fixed θ. Unfortunately, relation (3) cannot be asserted for the

hybrid intervals, but Chuang and Lai argue both theoretically and by example that it should
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be approximately true. In some cases the calculations can be done by numerical integration,

but they can always be done by simulation. For a given x, generate independent X ∗

1 , · · · , X∗

N

(pseudo) random numbers from the density fθ,η̂θ
; compute Λθ(X

∗

k) from (1) with x replaced

by X∗

k ; and let c∗θ be the largest value of c for which

#{k ≤ N : Λθ(X
∗

k) ≥ c}
N

≥ 1 − α. (4)

Here the left side of (4) provides a Monte Carlo Estimate for Pθ,η̂θ
[Λθ(X

∗) ≥ c], and c∗θ

provides an estimate of c+
θ .

The hybrid method resembles Efron’s bootstrap resampling method, but differs in one

important respect. For computing (2) for fixed θ, θ and η are replaced by θ and η̂θ, as opposed

to θ̂ and η̂. This is the origin of the term “hybrid”. Evidence that the hybrid method

is reliable – that is, that (3) is approximately true comes from two sources, asymptotic

approximations and simulations. These are reported in [1] and [2] and include some dramatic

successes. Here the method is applied to three examples of interest to astronomers and

physicists: estimating a non-negative normal mean, estimating the angle when the mean

(vector) of a bivariate normal distribution is expressed in polar coordinates, and estimating

the Poisson mean in the presence of background. The hybrid method has (independently)

been suggested in the physics literature by Feldman (see [6]).

2 The Normal Case

Suppose that X = (Y, W ), where Y and W are independent, Y is normally distributed with

mean θ ≥ 0 and variance σ2, and W/σ2 has a chi-squared distribution with r degrees of

freedom. For example, if data originally consists of a sample Yi = θ + εi, i = 1, · · · , n,

where εi’s are independent and identically distributed N(0, σ2), then one can let Y = Ȳ and

W = (n− 1)V 2/n where Ȳ and V 2 denote the sample mean and variance of Y1, · · · , Yn. The

unknown parameters here are θ ≥ 0 and σ2 > 0. Thus, the likelihood function is

L(θ, σ2|y, w) =
1√

2r+1πΓ(r/2)

w
1

2
r−1

σr+1
exp

{

− 1

2σ2
[(y − θ)2 + w]

}

.

For a given θ, L is maximized by

σ̂2
θ =

1

r + 1
[w + (y − θ)2];
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Figure 1: Confidence limits for θ/s as a function of y/s when r = 10 and α = .1

and L is maximized with respect to θ and σ2 jointly by

θ̂ = max[0, y] = y+,

say, and

σ̂2 =
1

r + 1
[w + y2

−
],

where y− = −min[0, y]. After some simple algebra,

log[Λθ] = −1

2
(r + 1) log(

σ̂2
θ

σ̂2
) = −1

2
(r + 1) log

[

W + (Y − θ)2

W + Y 2
−

]

.

Let

U =
W

σ2
and Z =

Y − θ

σ
.

Then U and Z are independent random variables for which U ∼ χ2
r and Z ∼ Normal(0, 1),

and

log[Λθ] = −1

2
(r + 1) log

[

U + Z2

U + (Z + θ/σ)2
−

]

.

This is an increasing function of σ for each θ > 0. So, since the joint distribution of U and

Z does not depend on parameters,

min
σ>0

Pθ,σ[Λθ ≥ c] = lim
σ→0

Pθ,σ[Λθ ≥ c] = P

[

−1

2
(r + 1) log (1 +

T 2

r
) ≥ − log(c)

]

,
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where

T =
Z

√

U/r

has t-distribution with r degrees of freedom. Thus the desired c is

c = exp
{

− 1

2
(r + 1) log [1 +

t2
r,1− 1

2
α

r
]
}

,

where tr,1− 1

2
α is the 1 − 1

2
α percentile of the latter distribution and is independent of θ.

To find the confidence intervals, one must solve the inequality Λθ ≥ c for θ. Letting

s2 = W/r, this may be written

1 + (y − θ)2/(rs2)

1 + y2
−
/(rs2)

≤ 1 +
t2
r,1− 1

2
α

r

or

[y − bs]+ ≤ θ ≤ y + bs, (5)

where

b =

√

√

√

√

√t2
r,1− 1

2
α

+
y2
−

s2



1 +
t2
r,1− 1

2
α

r



. (6)

Thus, if y > 0, then the unified intervals are just the usual t-intervals, truncated to non-

negative values; and if y > bs, then they are symmetric about y. This differs from the case

of known σ, where the intervals are (slightly) asymmetric, even for large y. There is a more

dramatic difference with the case of known σ for y < 0. Observe that for y < 0,

y + bs ≥ s

√

√

√

√

√

y2

s2



1 +
t2
r,1− 1

2
α

r



 − |y|
s

= |y|

√

√

√

√

1 +
t2
r,1− 1

2
α

r
− 1.

So the upper confidence limit approaches +∞ as y → −∞, unlike the case of known σ where

it approaches 0. Mandelkern [7] found the latter behavior non-intuitive. If we let r → ∞
and s2 → σ2, then we do not recover the intervals of Feldman and Cousins with known σ2.

Rather, we get the interval (5) with the t-percentile replaced by the corresponding normal

percentile.

Observe that the confidence limits for θ may be written as [y/s − b]+ ≤ θ/s ≤ y/s + b.

Figure 1 shows shows these upper and lower confidence limits for θ/s as a function of y/s

for r = 10 and α = .1. For a specific example, suppose that r = 10, s = 1, y = −.3, and

α = .90. Then b =
√

(1.812)2 + (.3)2(1 + (.1812)2) = 1.84, and the interval is 0 ≤ θ ≤ 1.54.

The hybrid method yields 0 ≤ θ ≤ 1.14 in this example. The details are omitted here, but

an example using the hybrid method is included in Section 4.

5



3 Angles

Suppose that X = (X1, X2) where X1 and X2 are normally distributed random variables with

unknown means µ1 and µ2 and known variance σ2. Write µ1 and µ2 in polar coordinates,

µ1 = ρ cos(θ) and µ2 = ρ sin(θ), where −π < θ ≤ π, and consider confidence intervals for θ.

In this example, the likelihood function,

L(θ, ρ|x) =
1

2πσ2
exp

{

− 1

2σ2

[

(x1 − ρ cos(θ))2 + (x2 − ρ sin(θ))2
]

}

,

is maximized for a fixed θ by

ρ̂θ = max[0, x1 cos(θ) + x2 sin(θ)]

and unconditionally by ρ̂ and θ̂, where x1 = ρ̂ cos(θ̂) and x2 = ρ̂ sin(θ̂). Then L(θ̂, ρ̂|x) =

1/(2πσ2), and

Λθ = exp [ − 1

2σ2
(ρ̂2 − ρ̂2

θ)].

Let

Z1 =
1

σ
[ cos(θ)X1 + sin(θ)X2 − ρ],

Z2 =
1

σ
[ sin(θ)X1 − cos(θ)X2].

Then Z1 and Z2 are independent normal variables (both) with the same mean 0 and unit

variance, and

Λθ = exp { − 1

2
[(Z1 + ρ)2

−
+ Z2

2 ]},

where (recall) z− = −min[0, z], after some simple algebra. Thus, Λθ is an increasing function

of ρ for fixed Z1, Z2, and θ. So, since the joint distribution of Z1 and Z1 does not depend

on parameters

min
ρ

Pθ,ρ[Λθ ≥ c] = lim
ρ→0

Pθ,ρ[Λθ ≥ c].

Letting b = −2 log(c), this is just

P [Z2
1,− + Z2

2 ≤ b] = P [Z1 ≤ 0, Z2
1 + Z2

2 ≤ b] + P [Z1 > 0, Z2
2 ≤ b]

=
1

2
P [χ2

1 ≤ b] +
1

2
P [χ2

2 ≤ b].

So, c = e−2b, where b solves 1
2
P [χ2

1 ≤ b] + 1
2
P [χ2

2 ≤ b] = 1 − α. For example, when

α = .90, b = 3.808.
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Unified confidence intervals for θ then consist of θ for which ρ̂2− ρ̂2
θ ≤ bσ2, or equivalently

ρ̂2
θ ≥ ρ̂2 − bσ2. Thus, if ρ̂2 ≤ bσ2, then the interval consists of all values −π < θ ≤ π. On

one hand, this simply reflects the (obvious) fact that if ρ̂ is small, then there is no reliable

information for estimating θ, but it also admits the following amusing paraphrase: One is

100(1 − α) percent confident of something that is certain. If ρ̂2 > bσ2, then the intervals

consist of θ for which ρ̂ cos(θ − θ̂) ≥
√

ρ̂2 − bσ2; that is

θ̂ − arccos(

√

1 − bσ2

ρ̂2
) ≤ θ ≤ θ̂ + arccos(

√

1 − bσ2

ρ̂2
),

where arccos(y) is the unique ω for which 0 ≤ ω ≤ π and cos(ω) = y and addition is

understood modulo π. Thus, there is a discontinuity in the length of the intervals as ρ̂

passes through bσ2: It decreases from 2π to something less than π.

4 Counts with Background

Suppose that X = (W, Y ) where W and Y are independent, W has the Poisson distribution

with mean mb, and Y has the Poisson distribution with mean b + θ. Here b and θ are

unknown; m is assumed known and large values of m are of interest. In this case, the

likelihood function and score functions are

L(θ, b|w, y) = fθ,b(w, y) =
(mb)w

w!
e−mb × (θ + b)y

y!
e−(θ+b),

∂ log(L)

∂θ
=

y

b + θ
− 1,

and
∂ log(L)

∂b
=

w

b
+

y

θ + b
− (m + 1).

Consider b̂θ for a fixed θ. If w = 0, then L is maximized when b = [y/(m + 1)− θ]+; and

if w > 0 it is maximized at the (positive) solution to ∂ log(L)/∂b = 0, i.e.,

b̂θ =
[(w + y) − (m + 1)θ] +

√

[(m + 1)θ − (w + y)]2 + 4(m + 1)wθ

2(m + 1)
; (7)

and fortuitously, (7) also gives the correct answer when w = 0. The unconstrained maximum

likelihood estimators may then be found as θ̂ and b̂ = b̂θ̂, where θ̂ maximizes the profile

likelihood function L(θ, b̂θ|w, y). Considering the cases y ≤ w/m and y > y/m separately,

shows that

θ̂ = (y − w

m
)+
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Figure 2: Λθ (smooth line) and cθ (jagged line).

and

b̂ =
w + y − θ̂

m + 1
.

So,

Λθ(y, w) = (
b̂θ

b̂
)w(

θ + b̂θ

θ̂ + b̂
)y exp [(w + y) − (m + 1)b̂θ − θ],

after some simple algebra.

We have been unable to find the minimizing value in (2) and, so, will use the Hybrid

Resampling Method. This is best illustrated by an example. Figure 2 below shows Λθ and

cθ for an example in which m = 6, w = 23, and y = 0. This is patterned after the original

KARMEN report [4], but with a larger value of b̂ and more variability in b̂. The c∗θ was

computed by Monte Carlo on the grid θ = 0, .1, .2, · · · , 10 using N = 10, 000 in (4). The

right end-point of the interval can be read from the graph.

By construction, the hybrid-unified method always delivers non-degenerate subinterval

of [0,∞), even when y = 0, and, thus, avoids the types of problems reported in [11]. It

does not avoid the problems inherent in the use of the unified method without nuisance

parameters, however – for example, dependence of the interval on b̂ when y = 0. We believe

that the interval [0, 2.31] is a more reasonable statement of the uncertainty in this example,
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for reasons explained in [9].
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