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The task of setting limits in situations involving nuisance pa-

rameters with uncertainties has proved a difficult one in prac-

tice. CDF’s Statistics Committee has recently recommended a

Bayesian approach to setting limits.

While investigating the performance of that approach, one rather

restricted scenario was found to result in poor coverage behavior.

The scenario is described, the resulting poor coverage behavior

is illustrated, and solutions are proposed.
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1st test case: upper limit for single channel Poisson process

Observe n events from a process with Poisson rate εs + b , where

s is cross section, ε is acceptance×luminosity, b is background,

and obtain the Bayesian posterior for s. Nuisance parameters

ε and b are determined via Poisson subsidiary measurements,

whose posteriors serve as the priors for ε and b in the main

measurement. The specified Bayesian priors are

• flat prior for s > 0

• flat (subsidiary) prior for ε > 0

• flat (subsidiary) prior for b > 0

After marginalizing over ε and b, we obtain an upper limit for s

by integrating the posterior with respect to s from s = 0 to the

value of s that yields credibility level β.
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the subsidiary measurements

The subsidiary measurement for ε observes m events with Poisson

rate κε, where κ is a known constant. The subsidiary posterior,

p(ε|m) =
κ(κε)me−κε

m!
becomes the prior for ε in the main measurement. The mean of

p(ε|m) is (m + 1)/κ. (Calibration measurement for ε.)

The subsidiary measurement for b observes r events with Poisson

rate ωb, where ω is a known constant. The subsidiary posterior,

p(b|r) =
ω(ωb)re−ωb

r!
becomes the prior for b in the main measurement. The mean of

p(b|r) is (r + 1)/ω. (Sideband determination of b.)
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The posterior p(s|n) is calculated analytically, given in

www-cdf.fnal.gov/publications/cdf7117_bayesianlimit.pdf and

www-cdf.fnal.gov/publications/cdf7232_blimitguide.pdf.
n=5     ε=1.0±0.1     b=3     

0 20s

An example p(s|n) with b fixed (κ = 100 and m = 99).
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We employ objective Bayesian methodology. The priors, which

are improper (and not related to personal belief), are evaluated

using a frequentist technique.

The frequentist coverage probability C is used as a diagnostic to

check the performance of the limit setting scheme. For upper

limits on s, C is the probability that, for fixed (true) values of

the parameter of interest s and nuisance parameters ε and b, the

resulting upper limit will be larger than strue. The coverage is

calculated by summing over all possible outcomes of the main

and subsidiary measurements.

For this single channel case, C > β for every combination of

strue, εtrue, and btrue tested, with this choice of priors, even when

uncertainties on ε and b are very large. Although opinions differ

on whether any undercoverage is acceptable, large undercoverage

is considered bad. The single channel test case passes this test.
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Typical single channel case

Coverage for 90% credibility level upper limits

Acceptance uncertainty = 10%

Background uncertainty = zero

β=0.90     εtrue=1     κ=100     b=3     

0 20
0.90

1.00

strue

C
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Typical single channel case

Coverage for 90% credibility level upper limits

Acceptance uncertainty = 20%

Background uncertainty = 15%

This example is divided into N channels later in the talk

β=0.90     εtrue=1     κ=25     btrue=3     ω=16     

0 20
0.90

1.00

strue

C

7



Extreme single channel case

Coverage for 90% credibility level upper limits

Acceptance uncertainty = 50%

Background uncertainty = 29%

Larger ε and b uncertainties lead to slightly larger C here

β=0.90   εtrue=1   κ=4   btrue=3   ω=4   

0 20
0.90

1.00

strue

C
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Multiple Channels

Given N channels, and nk observed events in the kth channel,

k = 1,2, . . . , N , the Poisson probability of obtaining the observed

result is
N∏

k=1

e−(sεk+bk)(sεk + bk)
nk

nk!

where s the cross section and εk and bk are the acceptance and

expected background for the kth channel, respectively. One mul-

tiplies by 2N nuisance priors and marginalizes.

www-cdf.fnal.gov/publications/cdf7587_genlimit.pdf describes a

MC integration approach to calculating the Bayesian posterior

for s, given a prior flat in s, but no restrictions on the nuisance

priors.

9

www-cdf.fnal.gov/publications/cdf7587_genlimit.pdf


2nd test case: UL for N-independent-channel Poisson process

We specify that the data of the 1st test case (both the main

measurement and the subsidiary measurements) are divided into

N samples that are treated independently, to derive an upper

limit on the common parameter s. Flat priors are specified for the

2N subsidiary measurements, leading to 2N subsidiary posteriors

that become the nuisance priors for the main measurement. The

prior for s remains flat.

For this Poisson example, we find that, when the size of the initial

subsidiary data sets is not large, dividing into N independent

channels drives C progressively further down as N increases.
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2 independent channels

Coverage for 90% credibility level upper limits

Acceptance uncertainty = 29%/channel

Background uncertainty = 20%/channel

β=0.90   εtrue=0.5 0.5   κ=25 25   btrue=1.5 1.5   ω=16 16   

0 20
0.90

1.00

strue

C
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3 independent channels

Coverage for 90% credibility level upper limits

Acceptance uncertainty = 34%/channel

Background uncertainty = 25%/channel

β=0.90   εtrue=0.333333 0.333333 0.333333   κ=25 25 25   btrue=1 1 1   ω=16 16 16   

0 20
0.90

1.00

strue

C
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4 independent channels

Coverage for 90% credibility level upper limits

Acceptance uncertainty = 40%/channel

Background uncertainty = 29%/channel

β=0.90   εtrue=0.25 0.25 0.25 0.25   κ=25 25 25 25   btrue=0.75 0.75 0.75 0.75   ω=16 16 16 16   

0 20
0.90

1.00

strue

C
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The fault is in our choice of priors for the Poisson subsidiary

measurements. E.g., a flat prior for each channel’s εk subsidiary

measurement yields an εN−1 prior for the total acceptance, cre-

ating a large bias when N > 2. (Same bias problem for b.)

With respect to UL’s, a flat prior for s leads to a bias producing

overcoverage in simple Poisson cases. This bias in the subsidiary

measurements leads to undercoverage in the main measurement,

since an overestimate of ε or b leads to an underestimate for

s. In our test case, using a flat prior is “conservative” for s,

but “anticonservative” for ε and b. When N = 1, they roughly

balance. When N > 2, the subsidiary priors dominate.

For our test case, a “perfect” solution is available: Use 1/εk and

1/bk (Jeffreys “other”) priors for the subsidiary measurements.
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4 independent channels

Coverage for 90% credibility level upper limits

Acceptance uncertainty = 40%/channel

Background uncertainty = 29%/channel

Use of 1/εk and 1/bk subsidiary priors restores coverage

β=0.90   εtrue=0.25 0.25 0.25 0.25   κ=25 25 25 25   btrue=0.75 0.75 0.75 0.75   ω=16 16 16 16   

0 20
0.90

1.00

strue

C
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With this choice of subsidiary priors, the nuisance priors for the

kth channel become

p(εk|mk) =
κk(κkεk)

mk−1e−κkεk

(mk − 1)!
p(bk|rk) =

ωk(ωkbk)
rk−1e−ωkbk

(rk − 1)!

The means are mk/κk and rk/ωk, respectively, eliminating the

bias:

〈mk/κk〉 = εtrue,k 〈rk/ωk〉 = btrue,k

That is, the mean of the nuisance prior is now an unbiased

estimator of the true value of the nuisance parameter.

16



progress since September 2005

Preceding pages from PHYSTAT05 talk. See:

www.physics.ox.ac.uk/phystat05/proceedings/files/heinrich.ps

Unfortunately, coverage studies like this are very time consuming

(both CPU time and physicist time). We propose a method

that should catch many problems before the full computation of

frequentist coverage. The proposed test is as follows:
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1. Compute the Bayesian limit sN (CL=β) for a simple test

case in the N-channel scheme to be tested. Must specify

the outcome for the main and subsidiary measurements.

2. Make a corresponding test case with all εk and bk propor-

tional to one master ε parameter and one master b parame-

ter. Choose constants of proportionality from the outcomes

specified for the subsidiary measurements in step 1; i.e. force

the nuisance parameters to be related in the same way as

the step 1 subsidiary measurements’ outcomes. In effect,

the 2N subsidiary measurements are combined into a single

subsidiary measurement each for ε and b.

3. In step 2, by forcing the nuisance parameters to be 100%

correlated, we have coerced the test case of step 1 into a

single channel format. Compute the posterior p.d.f. for the

parameter of interest s for the step 2 test case (easy since

there is now only one channel).
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4. Note that the step 2 test case is fictitious, not corresponding

to the reality of the step 1 case. We have added information

in step 2, without altering the data, which should result in

a better limit on the parameter of interest. Compute the

Bayesian credibility β′ of the limit sN obtained in step 1 using

the posterior from step 3. We expect that β′ > β; if this

occurs, the test is passed. Having β′ significantly less than β

indicates a pathological choice of subsidiary priors.

Four-channel example: observe 3 events/channel. The 8 sub-

sidiary measurements are:

mk = 6 κk = 25 rk = 12 ωk = 16

for k = 1,2,3,4.
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Calculate the upper limit for the cross section s in the 4 chan-

nel case where we use priors flat in ε and b for the subsidiary

measurements:

upper limit at 90.0% credibility level = 14.4724± 0.0040

Next, compute Bayesian credibility of this limit in the single

channel case obtained by combining the main and subsidiary

measurements into a single channel. We integrate the marginal-

ized posterior from s = 0 to s = 14.4724, and obtain

corresponding single channel credibility = 0.810289

When combining 4 channels into 1 channel, we are adding the

additional information that the acceptance and background rates

are the same for each channel. Using this additional information,

we expect to set a slightly better upper limit, but instead find

that we would have to integrate out to significantly higher s to

reach 0.9, so we get a worse limit for the single channel case.
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The proposed fix to restore coverage that uses 1/ε and 1/b priors

for the subsidiary measurements, in contrast, yields:

upper limit at 90.0% credibility level = 17.1892± 0.0053

for the 4 channel case, and obtains

corresponding single channel credibility = 0.905875

which is consistent with expectations: adding information leads

to a slightly better limit.
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Conclusions

• The multichannel case involves a multidimensional nuisance

prior. In hindsight, this should have led us to distrust a prior

flat in multiple dimensions, since this is well known to lead

to problems.

• Our example is not entirely realistic, as it specifies unusually

low precision calibrations. Also, correlations among the εk
and bk, which would effectively reduce the dimensionality, are

absent. But extreme cases are useful for testing the method.

• Marginalization over nuisance parameters using Bayesian pri-

ors is a common feature of many methods for setting limits.

Using unbiased priors will help avoid pathologies.
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Conclusions (continued)

• The 1/εk and 1/bk subsidiary priors are matched to this Pois-

son case. Other cases will require different solutions.

• In the objective Bayesian approach, the choice of subsidiary

priors is just as important as the choice of prior for the pa-

rameter of interest in the main measurement. Switching to

1/εk and 1/bk subsidiary priors to remove the bias in the nui-

sance priors raised the coverage significantly, and may make

use of 1/
√

s prior in the main measurement more appealing.

• Coverage calculations are useful in revealing poor choices of

prior in the objective Bayesian approach.
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